cudf
Numba
cudf | Numba | |
---|---|---|
27 | 127 | |
8,496 | 10,017 | |
1.1% | 1.0% | |
9.9 | 9.8 | |
4 days ago | 13 days ago | |
C++ | Python | |
Apache License 2.0 | BSD 3-clause "New" or "Revised" License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
cudf
-
Unleashing GPU Power: Supercharge Your Data Processing with cuDF
cuDF Documentation
-
This Week In Python
cudf – GPU DataFrame Library
- cuDF – GPU DataFrame Library
- CuDF – GPU DataFrame Library
-
A Polars exploration into Kedro
The interesting thing about Polars is that it does not try to be a drop-in replacement to pandas, like Dask, cuDF, or Modin, and instead has its own expressive API. Despite being a young project, it quickly got popular thanks to its easy installation process and its “lightning fast” performance.
-
Why we dropped Docker for Python environments
Perhaps the largest for package size is the NVIDIA developed rapids toolkit https://rapids.ai/ . Even still adding things like pandas and some geospatial tools, you rapidly end up with an image well over a gigabyte, despite following cutting edge best practice with docker and python.
-
Introducing TeaScript C++ Library
Yes sure, that is how OpenMP does; but on the other side: you seem to already do some basic type inference, and building an AST, no? Then you know as well the size and type of your vectors, and can execute actions in parallel if there is enough data to be worth parallelizing. Is there anyone who don't want their code to execute faster if it is possible? Those that do work in big data domain do use threads and vectorized instructions without user having to type in any directive; just import different library. Example, numpy or numpy with cuda backend, or similar GPU accelerated libraries like cudf.
-
[D] Can we use Ray for distributed training on vertex ai ? Can someone provide me examples for the same ? Also which dataframe libraries you guys used for training machine learning models on huge datasets (100 gb+) (because pandas can't handle huge data).
Not the answer about Ray: you could use rapids.ai. I'm using it for for dataframe manipulation on GPU
-
Story of my life
To put Data Analytics on GPU Steroids, Try RAPIDS cudf https://rapids.ai/
-
Artificial Intelligence in Python
You can scope out https://rapids.ai/. Nvidia's AI toolkits. They have some handy notebooks to poke at to get you started.
Numba
-
CuPy: NumPy and SciPy for GPU
I'm surprised to see pytorch and Jax mentioned as alternatives but not numba : https://github.com/numba/numba
I've recently had to implement a few kernels to lower the memory footprint and runtime of some pytorch function : it's been really nice because numba kernels have type hints support (as opposed to raw cupy kernels).
- I Use Nim Instead of Python for Data Processing
- Nvidia Warp: A Python framework for high performance GPU simulation and graphics
-
Mojo🔥: Head -to-Head with Python and Numba
Around the same time, I discovered Numba and was fascinated by how easily it could bring huge performance improvements to Python code.
-
Is anyone using PyPy for real work?
Simulations are, at least in my experience, numba’s [0] wheelhouse.
[0]: https://numba.pydata.org/
-
Any data folks coding C++ and Java? If so, why did you leave Python?
That's very cool. Numba introduces just-in-time compilation to Python via decorators and its sole reason for being is to turn everything it can into abstract syntax trees.
- Using Matplotlib with Numba to accelerate code
-
Python Algotrading with Machine Learning
A super-fast backtesting engine built in NumPy and accelerated with Numba.
-
PYTHON vs OCTAVE for Matlab alternative
Regarding speed, I don't agree this is a good argument against Python. For example, it seems no one here has yet mentioned numba, a Python JIT compiler. With a simple decorator you can compile a function to machine code with speeds on par with C. Numba also allows you to easily write cuda kernels for GPU computation. I've never had to drop down to writing C or C++ to write fast and performant Python code that does computationally demanding tasks thanks to numba.
-
Codon: Python Compiler
Just for reference,
* Nuitka[0] "is a Python compiler written in Python. It's fully compatible with Python 2.6, 2.7, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11."
* Pypy[1] "is a replacement for CPython" with builtin optimizations such as on the fly JIT compiles.
* Cython[2] "is an optimising static compiler for both the Python programming language and the extended Cython programming language... makes writing C extensions for Python as easy as Python itself."
* Numba[3] "is an open source JIT compiler that translates a subset of Python and NumPy code into fast machine code."
* Pyston[4] "is a performance-optimizing JIT for Python, and is drop-in compatible with ... CPython 3.8.12"
[0] https://github.com/Nuitka/Nuitka
[1] https://www.pypy.org/
[2] https://cython.org/
[3] https://numba.pydata.org/
[4] https://github.com/pyston/pyston
What are some alternatives?
chia-plotter
NetworkX - Network Analysis in Python
wif500 - Try to find the WIF key and get a donation 200 btc
jax - Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
rmm - RAPIDS Memory Manager
Dask - Parallel computing with task scheduling
Pytorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration
cupy - NumPy & SciPy for GPU
CUDA.jl - CUDA programming in Julia.
SymPy - A computer algebra system written in pure Python
mpire - A Python package for easy multiprocessing, but faster than multiprocessing
Pyjion - Pyjion - A JIT for Python based upon CoreCLR