Codon: Python Compiler

This page summarizes the projects mentioned and recommended in the original post on news.ycombinator.com

Sevalla - Deploy and host your apps and databases, now with $50 credit!
Sevalla is the PaaS you have been looking for! Advanced deployment pipelines, usage-based pricing, preview apps, templates, human support by developers, and much more!
sevalla.com
featured
InfluxDB – Built for High-Performance Time Series Workloads
InfluxDB 3 OSS is now GA. Transform, enrich, and act on time series data directly in the database. Automate critical tasks and eliminate the need to move data externally. Download now.
www.influxdata.com
featured
  1. codon

    A high-performance, zero-overhead, extensible Python compiler with built-in NumPy support

    Repo for more details: https://github.com/exaloop/codon

    > What is Codon?

    > Codon is a high-performance Python compiler that compiles Python code to native machine code without any runtime overhead. Typical speedups over Python are on the order of 10-100x or more, on a single thread. Codon's performance is typically on par with (and sometimes better than) that of C/C++. Unlike Python, Codon supports native multithreading, which can lead to speedups many times higher still. Codon grew out of the Seq project.

    > What isn't Codon?

    > While Codon supports nearly all of Python's syntax, it is not a drop-in replacement, and large codebases might require modifications to be run through the Codon compiler. For example, some of Python's modules are not yet implemented within Codon, and a few of Python's dynamic features are disallowed. The Codon compiler produces detailed error messages to help identify and resolve any incompatibilities.

    > Codon can be used within larger Python codebases via the @codon.jit decorator. Plain Python functions and libraries can also be called from within Codon via Python interoperability.

  2. Sevalla

    Deploy and host your apps and databases, now with $50 credit! Sevalla is the PaaS you have been looking for! Advanced deployment pipelines, usage-based pricing, preview apps, templates, human support by developers, and much more!

    Sevalla logo
  3. Numba

    NumPy aware dynamic Python compiler using LLVM

    Just for reference,

    * Nuitka[0] "is a Python compiler written in Python. It's fully compatible with Python 2.6, 2.7, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11."

    * Pypy[1] "is a replacement for CPython" with builtin optimizations such as on the fly JIT compiles.

    * Cython[2] "is an optimising static compiler for both the Python programming language and the extended Cython programming language... makes writing C extensions for Python as easy as Python itself."

    * Numba[3] "is an open source JIT compiler that translates a subset of Python and NumPy code into fast machine code."

    * Pyston[4] "is a performance-optimizing JIT for Python, and is drop-in compatible with ... CPython 3.8.12"

    [0] https://github.com/Nuitka/Nuitka

    [1] https://www.pypy.org/

    [2] https://cython.org/

    [3] https://numba.pydata.org/

    [4] https://github.com/pyston/pyston

  4. Nuitka

    Nuitka is a Python compiler written in Python. It's fully compatible with Python 2.6, 2.7, 3.4-3.13. You feed it your Python app, it does a lot of clever things, and spits out an executable or extension module.

    Just for reference,

    * Nuitka[0] "is a Python compiler written in Python. It's fully compatible with Python 2.6, 2.7, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11."

    * Pypy[1] "is a replacement for CPython" with builtin optimizations such as on the fly JIT compiles.

    * Cython[2] "is an optimising static compiler for both the Python programming language and the extended Cython programming language... makes writing C extensions for Python as easy as Python itself."

    * Numba[3] "is an open source JIT compiler that translates a subset of Python and NumPy code into fast machine code."

    * Pyston[4] "is a performance-optimizing JIT for Python, and is drop-in compatible with ... CPython 3.8.12"

    [0] https://github.com/Nuitka/Nuitka

    [1] https://www.pypy.org/

    [2] https://cython.org/

    [3] https://numba.pydata.org/

    [4] https://github.com/pyston/pyston

  5. Cython

    The most widely used Python to C compiler

    Just for reference,

    * Nuitka[0] "is a Python compiler written in Python. It's fully compatible with Python 2.6, 2.7, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11."

    * Pypy[1] "is a replacement for CPython" with builtin optimizations such as on the fly JIT compiles.

    * Cython[2] "is an optimising static compiler for both the Python programming language and the extended Cython programming language... makes writing C extensions for Python as easy as Python itself."

    * Numba[3] "is an open source JIT compiler that translates a subset of Python and NumPy code into fast machine code."

    * Pyston[4] "is a performance-optimizing JIT for Python, and is drop-in compatible with ... CPython 3.8.12"

    [0] https://github.com/Nuitka/Nuitka

    [1] https://www.pypy.org/

    [2] https://cython.org/

    [3] https://numba.pydata.org/

    [4] https://github.com/pyston/pyston

  6. Pyston

    (No longer maintained) A faster and highly-compatible implementation of the Python programming language.

    Just for reference,

    * Nuitka[0] "is a Python compiler written in Python. It's fully compatible with Python 2.6, 2.7, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11."

    * Pypy[1] "is a replacement for CPython" with builtin optimizations such as on the fly JIT compiles.

    * Cython[2] "is an optimising static compiler for both the Python programming language and the extended Cython programming language... makes writing C extensions for Python as easy as Python itself."

    * Numba[3] "is an open source JIT compiler that translates a subset of Python and NumPy code into fast machine code."

    * Pyston[4] "is a performance-optimizing JIT for Python, and is drop-in compatible with ... CPython 3.8.12"

    [0] https://github.com/Nuitka/Nuitka

    [1] https://www.pypy.org/

    [2] https://cython.org/

    [3] https://numba.pydata.org/

    [4] https://github.com/pyston/pyston

  7. cpython

    The Python programming language (by faster-cpython)

    Not to forget CPython's own faster-cpython project which aims at JIT compiling. [0]

    Also JAX[1], PyTorch[2] come with JIT compilation specifically aimed at GPU kernels "fusing" multiple higher-level operation

    And NumPy/Scipy (also) uses Pythran[3], an AOT compiler not too unsimilar to Numba.

    [0] https://github.com/faster-cpython/cpython

  8. pythran

    Ahead of Time compiler for numeric kernels

  9. InfluxDB

    InfluxDB – Built for High-Performance Time Series Workloads. InfluxDB 3 OSS is now GA. Transform, enrich, and act on time series data directly in the database. Automate critical tasks and eliminate the need to move data externally. Download now.

    InfluxDB logo
  10. jax

    Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

NOTE: The number of mentions on this list indicates mentions on common posts plus user suggested alternatives. Hence, a higher number means a more popular project.

Suggest a related project

Related posts

  • Common Misconceptions about Compilers

    1 project | news.ycombinator.com | 9 Dec 2024
  • The father of Swift made another baby: Mojo: looks to be based on Python using MLIR

    1 project | /r/swift | 5 May 2023
  • MIT Turbocharges Python’s Notoriously Slow Compiler

    1 project | /r/tech | 1 Apr 2023
  • Budget HomeLab converted to endless money-pit

    1 project | /r/homelab | 29 Mar 2023
  • What are your thoughts on Codon compiler having a paid licence?

    2 projects | /r/Python | 26 Mar 2023

Did you know that Python is
the 2nd most popular programming language
based on number of references?