mlpack
mlpack: a fast, header-only C++ machine learning library (by mlpack)
cheatsheets
Official Matplotlib cheat sheets (by matplotlib)
mlpack | cheatsheets | |
---|---|---|
4 | 126 | |
5,466 | 7,548 | |
1.0% | 0.7% | |
9.4 | 7.3 | |
4 days ago | 15 days ago | |
C++ | Python | |
GNU General Public License v3.0 or later | BSD 2-clause "Simplified" License |
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
mlpack
Posts with mentions or reviews of mlpack.
We have used some of these posts to build our list of alternatives
and similar projects. The last one was on 2022-01-23.
-
How much C++ is used when it comes to performing quant research?
Does C++ have the equivalent of Pandas or Apache Spark? Are there extensive libraries that exist/are being developed that allow you to perform operations with data? Or do people just use a combination of Python & its various libraries (NumPy etc)? If we leave aside the data bit, are there libraries that allow you to develop ML models in C++ (mlpack for instance ) faster & more efficiently compared to their Python counterparts (scikit-learn)? On a more general note, how does C++ fit into the routine of a Quant Researcher? And at what scale does an organization decide they need to start switching to other languages and spend more time developing the code ?
-
What is the most used library for AI in C++ ?
mlpack is a great library for machine learning in C++. It's very fast and not too much of a learning curve.
-
Ensmallen: A C++ Library for Efficient Numerical Optimization
This toolkit was originally part of the mlpack machine learning library (https://github.com/mlpack/mlpack) before it was split out into a separate, standalone effort.
-
Top 10 Python Libraries for Machine Learning
Github Repository: https://github.com/mlpack/mlpack Developed By: Community, supported by Georgia Institute of technology Primary purpose: Multiple ML Models and Algorithms
cheatsheets
Posts with mentions or reviews of cheatsheets.
We have used some of these posts to build our list of alternatives
and similar projects. The last one was on 2023-12-25.
-
Mastering Matplotlib: A Step-by-Step Tutorial for Beginners
Matplotlib - A Python 2D plotting library.
-
How to retrieve and analyze crypto order book data using Python and a cryptocurrency API
Data visualization: utilizing Python's Matplotlib for visualizing order book information.
- Matplotlib
- Ask HN: What plotting tools should I invest in learning?
- Help with an array
-
Getting visual studio code to work with imported library
Name: matplotlib Version: 3.7.1 Summary: Python plotting package Home-page: https://matplotlib.org Author: John D. Hunter, Michael Droettboom Author-email: [email protected] License: PSFLocation: /home/huinker/.local/lib/python3.10/site-packages
-
PSA: You don't need fancy stuff to do good work.
Python's pandas, NumPy, and SciPy libraries offer powerful functionality for data manipulation, while matplotlib, seaborn, and plotly provide versatile tools for creating visualizations. Similarly, in R, you can use dplyr, tidyverse, and data.table for data manipulation, and ggplot2, lattice, and shiny for visualization. These packages enable you to create insightful visualizations and perform statistical analyses without relying on expensive or proprietary software.
-
What else should I complete before applying for a data analyst role?
programming language: basic python, pandas, matplotlib -- you'll probably do these in school, but if not https://cs50.harvard.edu/python/2022/ https://matplotlib.org/
-
[OC] Analyzing 15,963 Job Listings to Uncover the Top Skills for Data Analysts (update)
Analysis was done in Jupyter Notebook with Python 3.10, Pandas, Matplotlib, wordcloud and Mercury framework.
-
[OC] Data Analyst Skills in need based on 15,963 job listings
Analysis was done in Jupyter Notebook with Python 3.10 kernel, Pandas, Matplotlib, wordcloud and Mercury framework to share notebook as a web application with widgets and code hidden. Gif created in Canva.
What are some alternatives?
When comparing mlpack and cheatsheets you can also consider the following projects:
Dlib - A toolkit for making real world machine learning and data analysis applications in C++
finplot - Performant and effortless finance plotting for Python
xgboost - Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
chat-replay-downloader - A simple tool used to retrieve chat messages from livestreams, videos, clips and past broadcasts. No authentication needed!
Caffe - Caffe: a fast open framework for deep learning.
manim - A community-maintained Python framework for creating mathematical animations.