mlpack
mlpack: a fast, header-only C++ machine learning library (by mlpack)
xgboost
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow (by dmlc)
mlpack | xgboost | |
---|---|---|
4 | 14 | |
5,385 | 27,093 | |
0.6% | 0.4% | |
9.6 | 9.6 | |
13 days ago | 1 day ago | |
C++ | C++ | |
GNU General Public License v3.0 or later | Apache License 2.0 |
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
mlpack
Posts with mentions or reviews of mlpack.
We have used some of these posts to build our list of alternatives
and similar projects. The last one was on 2022-01-23.
-
How much C++ is used when it comes to performing quant research?
Does C++ have the equivalent of Pandas or Apache Spark? Are there extensive libraries that exist/are being developed that allow you to perform operations with data? Or do people just use a combination of Python & its various libraries (NumPy etc)? If we leave aside the data bit, are there libraries that allow you to develop ML models in C++ (mlpack for instance ) faster & more efficiently compared to their Python counterparts (scikit-learn)? On a more general note, how does C++ fit into the routine of a Quant Researcher? And at what scale does an organization decide they need to start switching to other languages and spend more time developing the code ?
-
What is the most used library for AI in C++ ?
mlpack is a great library for machine learning in C++. It's very fast and not too much of a learning curve.
-
Ensmallen: A C++ Library for Efficient Numerical Optimization
This toolkit was originally part of the mlpack machine learning library (https://github.com/mlpack/mlpack) before it was split out into a separate, standalone effort.
-
Top 10 Python Libraries for Machine Learning
Github Repository: https://github.com/mlpack/mlpack Developed By: Community, supported by Georgia Institute of technology Primary purpose: Multiple ML Models and Algorithms
xgboost
Posts with mentions or reviews of xgboost.
We have used some of these posts to build our list of alternatives
and similar projects. The last one was on 2025-07-03.
-
Predicting Tomorrow's Tremors: A Machine Learning Approach to Earthquake Nowcasting in California
XGBoost Documentation: https://xgboost.readthedocs.io/
-
What AI/ML Models Should You Use and Why?
Boosting Boosting is not a separate ML model but a technique that combines multiple weak learners to create a single model that can generate highly accurate predictions. Xgboost is a common boosting model that supports distributed training, resulting in faster training. According to research by Intel, Xgboost can be more effective than a neural network-based approach for tabular data. In addition, Xgboost is faster to train and doesn’t require as much data as neural networks need.
- XGBoost: The Scalable and Distributed Gradient Boosting Library
-
stackgbm VS xgboost - a user suggested alternative
2 projects | 5 May 2024
- XGBoost 2.0
- XGBoost2.0
- Xgboost: Banding continuous variables vs keeping raw data
-
PSA: You don't need fancy stuff to do good work.
Finally, when it comes to building models and making predictions, Python and R have a plethora of options available. Libraries like scikit-learn, statsmodels, and TensorFlowin Python, or caret, randomForest, and xgboostin R, provide powerful machine learning algorithms and statistical models that can be applied to a wide range of problems. What's more, these libraries are open-source and have extensive documentation and community support, making it easy to learn and apply new techniques without needing specialized training or expensive software licenses.
-
XGBoost Save and Load Error
You can find the problem outlined here: https://github.com/dmlc/xgboost/issues/5826. u/hcho3 diagnosed the problem and corrected it as of XGB version 1.2.0.
-
For XGBoost (in Amazon SageMaker), one of the hyper parameters is num_round, for number of rounds to train. Does this mean cross validation?
Reference: https://github.com/dmlc/xgboost/issues/2031
What are some alternatives?
When comparing mlpack and xgboost you can also consider the following projects:
Dlib - A toolkit for making real world machine learning and data analysis applications in C++
Prophet - Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
Caffe - Caffe: a fast open framework for deep learning.
catboost - A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
SHOGUN - Shōgun
MLP Classifier - A handwritten multilayer perceptron classifer using numpy.