PSA: You don't need fancy stuff to do good work.

This page summarizes the projects mentioned and recommended in the original post on /r/datascience

Our great sponsors
  • Mergify - Updating dependencies is time-consuming.
  • Sonar - Write Clean Python Code. Always.
  • InfluxDB - Collect and Analyze Billions of Data Points in Real Time
  • xgboost

    Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

    Finally, when it comes to building models and making predictions, Python and R have a plethora of options available. Libraries like scikit-learn, statsmodels, and TensorFlowin Python, or caret, randomForest, and xgboostin R, provide powerful machine learning algorithms and statistical models that can be applied to a wide range of problems. What's more, these libraries are open-source and have extensive documentation and community support, making it easy to learn and apply new techniques without needing specialized training or expensive software licenses.

  • examples

    TensorFlow examples (by tensorflow)

    Finally, when it comes to building models and making predictions, Python and R have a plethora of options available. Libraries like scikit-learn, statsmodels, and TensorFlowin Python, or caret, randomForest, and xgboostin R, provide powerful machine learning algorithms and statistical models that can be applied to a wide range of problems. What's more, these libraries are open-source and have extensive documentation and community support, making it easy to learn and apply new techniques without needing specialized training or expensive software licenses.

  • Mergify

    Updating dependencies is time-consuming.. Solutions like Dependabot or Renovate update but don't merge dependencies. You need to do it manually while it could be fully automated! Add a Merge Queue to your workflow and stop caring about PR management & merging. Try Mergify for free.

  • seaborn

    Statistical data visualization in Python

    Python's pandas, NumPy, and SciPy libraries offer powerful functionality for data manipulation, while matplotlib, seaborn, and plotly provide versatile tools for creating visualizations. Similarly, in R, you can use dplyr, tidyverse, and data.table for data manipulation, and ggplot2, lattice, and shiny for visualization. These packages enable you to create insightful visualizations and perform statistical analyses without relying on expensive or proprietary software.

  • scikit-learn

    scikit-learn: machine learning in Python

    Finally, when it comes to building models and making predictions, Python and R have a plethora of options available. Libraries like scikit-learn, statsmodels, and TensorFlowin Python, or caret, randomForest, and xgboostin R, provide powerful machine learning algorithms and statistical models that can be applied to a wide range of problems. What's more, these libraries are open-source and have extensive documentation and community support, making it easy to learn and apply new techniques without needing specialized training or expensive software licenses.

  • rvest

    Simple web scraping for R

    Before diving into advanced machine learning algorithms or statistical models, we need to start with the basics: collecting and organizing data. Fortunately, both Python and R offer a wealth of libraries that make it easy to collect data from a variety of sources, including web scraping, APIs, and reading from files. Key libraries in Python include requests, BeautifulSoup, and pandas, while R has httr, rvest, and dplyr.

  • Pandas

    Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more

    Before diving into advanced machine learning algorithms or statistical models, we need to start with the basics: collecting and organizing data. Fortunately, both Python and R offer a wealth of libraries that make it easy to collect data from a variety of sources, including web scraping, APIs, and reading from files. Key libraries in Python include requests, BeautifulSoup, and pandas, while R has httr, rvest, and dplyr.

  • NumPy

    The fundamental package for scientific computing with Python.

    Python's pandas, NumPy, and SciPy libraries offer powerful functionality for data manipulation, while matplotlib, seaborn, and plotly provide versatile tools for creating visualizations. Similarly, in R, you can use dplyr, tidyverse, and data.table for data manipulation, and ggplot2, lattice, and shiny for visualization. These packages enable you to create insightful visualizations and perform statistical analyses without relying on expensive or proprietary software.

  • Sonar

    Write Clean Python Code. Always.. Sonar helps you commit clean code every time. With over 225 unique rules to find Python bugs, code smells & vulnerabilities, Sonar finds the issues while you focus on the work.

  • cheatsheets

    Official Matplotlib cheat sheets (by matplotlib)

    Python's pandas, NumPy, and SciPy libraries offer powerful functionality for data manipulation, while matplotlib, seaborn, and plotly provide versatile tools for creating visualizations. Similarly, in R, you can use dplyr, tidyverse, and data.table for data manipulation, and ggplot2, lattice, and shiny for visualization. These packages enable you to create insightful visualizations and perform statistical analyses without relying on expensive or proprietary software.

  • ggplot2

    An implementation of the Grammar of Graphics in R

    Python's pandas, NumPy, and SciPy libraries offer powerful functionality for data manipulation, while matplotlib, seaborn, and plotly provide versatile tools for creating visualizations. Similarly, in R, you can use dplyr, tidyverse, and data.table for data manipulation, and ggplot2, lattice, and shiny for visualization. These packages enable you to create insightful visualizations and perform statistical analyses without relying on expensive or proprietary software.

  • dplyr

    dplyr: A grammar of data manipulation

    Before diving into advanced machine learning algorithms or statistical models, we need to start with the basics: collecting and organizing data. Fortunately, both Python and R offer a wealth of libraries that make it easy to collect data from a variety of sources, including web scraping, APIs, and reading from files. Key libraries in Python include requests, BeautifulSoup, and pandas, while R has httr, rvest, and dplyr.

NOTE: The number of mentions on this list indicates mentions on common posts plus user suggested alternatives. Hence, a higher number means a more popular project.

Suggest a related project

Related posts