bayesian
brms
Our great sponsors
- Onboard AI - Learn any GitHub repo in 59 seconds
- InfluxDB - Collect and Analyze Billions of Data Points in Real Time
- SaaSHub - Software Alternatives and Reviews
bayesian | brms | |
---|---|---|
1 | 9 | |
40 | 1,176 | |
- | - | |
5.4 | 6.3 | |
5 days ago | 10 days ago | |
R | R | |
GNU General Public License v3.0 or later | GNU General Public License v3.0 only |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
bayesian
-
How do you train a Bayesian model
There's MLMod and Bayesian which are TidyModels wrappers for stan_glm and brms (brms is my go to) but I haven't seen anything that indicates how to tune them.
brms
-
Bayesian Structural Equation Modeling using blavaan
[2] https://paul-buerkner.github.io/brms/
-
Step-by-step example of Bayesian t-test?
Okay so first off, I recommend that you read [this](https://link.springer.com/article/10.3758/s13423-016-1221-4) article about "The Bayesian New Statistics", which highlights estimation rather than hypothesis testing from a Bayesian perspective (see Fig. 1, second row, second column). Instead of a t-test, then, we can *estimate the difference* between two groups/variables. If you want to go deeper than JASP etc, I recommend that you use [brms](https://paul-buerkner.github.io/brms/), or, if you want to go even deeper, [Stan](https://mc-stan.org/) (brms is a front-end to Stan).
-
[R] Are there methods for ridge and lasso regression that allow the introduction of weights to give more importance to some observations?
I think the brms package (https://github.com/paul-buerkner/brms) or the blavaan package (http://ecmerkle.github.io/blavaan/) have support for SEM. I've never done it myself, so I unfortunately can't give you any direction for that in particular. However, I have used stan in multi-level meta-analysis regression (combining multiple CRISPRa experiments to find determinants of CRISPRa activity, see https://github.com/timydaley/CRISPRa-sgRNA-determinants/blob/master/metaAnalysis/NeuronAndSelfRenewalMetaMixtureRegression.Rmd) and had some success.
-
I have a small sample size time series with potentially lagged predictor values which are also time series. What could be potential methods to analyse these data?
Anyway, I found I can include weights into the brm function by using gr(RE, by = var) to deal with the heterogeneous variance and it should automatically assume that each observation within a group is correlated according to the brms reference manual.
-
Brms: adding on a nonlinear component to working MLM model
This is what actually should work- I must be declaring my variables incorrectly. The issue I'm having is that what you refer to as lin , I tried calling a few things, from b to LinPred (which worked in the link here: brms issue 47). When I've tried doing this, I receive errors that say "The following variables are missing from the dataset....[insert variable used to symbolize linear part of the model)". But I believe you're code is on the right path for what needs to be done- I'll try altering my syntax to be sure it resembles yours let you know if it works.
Unfortunately, I can't just tag it onto to the working linear piece because brms doesn't allow for more than 2 level factor covariates in NL formulas. After much googling, I was able to find these brms github posts: 46 47 where they discuss how a NL component can be added. I've tried the syntax used, but it's still throwing errors. Here is one syntax I tried, going off of the information on those two links (where b1=lambda, b2= kappa)
What are some alternatives?
rstan - RStan, the R interface to Stan
stan - Stan development repository. The master branch contains the current release. The develop branch contains the latest stable development. See the Developer Process Wiki for details.
tinytex - A lightweight, cross-platform, portable, and easy-to-maintain LaTeX distribution based on TeX Live
stat_rethinking_2020 - Statistical Rethinking Course Winter 2020/2021
rBAPS - R implementation of the BAPS software for Bayesian Analysis of Population Structure
tests-as-linear - Common statistical tests are linear models (or: how to teach stats)
CRISPRa-sgRNA-determinants
bambi - BAyesian Model-Building Interface (Bambi) in Python.
multilevelmod - Parsnip wrappers for mixed-level and hierarchical models