brms
rstan
brms | rstan | |
---|---|---|
9 | 8 | |
1,274 | 1,036 | |
- | 1.0% | |
9.2 | 5.3 | |
5 days ago | 5 days ago | |
R | R | |
GNU General Public License v3.0 only | - |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
brms
-
Bayesian Structural Equation Modeling using blavaan
[2] https://paul-buerkner.github.io/brms/
-
[Q] Correlated multivariate Beta model
Maybe something like the Logistic Normal ? (e.g. see this issue from brms). If that fits what you are looking for, you can use brms to generate the Stan code for you (brms::make_stan_code()) and work from that.
-
Step-by-step example of Bayesian t-test?
Okay so first off, I recommend that you read [this](https://link.springer.com/article/10.3758/s13423-016-1221-4) article about "The Bayesian New Statistics", which highlights estimation rather than hypothesis testing from a Bayesian perspective (see Fig. 1, second row, second column). Instead of a t-test, then, we can *estimate the difference* between two groups/variables. If you want to go deeper than JASP etc, I recommend that you use [brms](https://paul-buerkner.github.io/brms/), or, if you want to go even deeper, [Stan](https://mc-stan.org/) (brms is a front-end to Stan).
-
[R] Are there methods for ridge and lasso regression that allow the introduction of weights to give more importance to some observations?
I think the brms package (https://github.com/paul-buerkner/brms) or the blavaan package (http://ecmerkle.github.io/blavaan/) have support for SEM. I've never done it myself, so I unfortunately can't give you any direction for that in particular. However, I have used stan in multi-level meta-analysis regression (combining multiple CRISPRa experiments to find determinants of CRISPRa activity, see https://github.com/timydaley/CRISPRa-sgRNA-determinants/blob/master/metaAnalysis/NeuronAndSelfRenewalMetaMixtureRegression.Rmd) and had some success.
-
Package for :Generalized Mixed Effects Models for Zero-Inflated Negative Binomial distributions ?
brms baby
-
Multiple observers
Could also be done using brms and the gr term. See this for the motivation behind this syntax.
-
I have a small sample size time series with potentially lagged predictor values which are also time series. What could be potential methods to analyse these data?
Anyway, I found I can include weights into the brm function by using gr(RE, by = var) to deal with the heterogeneous variance and it should automatically assume that each observation within a group is correlated according to the brms reference manual.
-
Brms: adding on a nonlinear component to working MLM model
This is what actually should work- I must be declaring my variables incorrectly. The issue I'm having is that what you refer to as lin , I tried calling a few things, from b to LinPred (which worked in the link here: brms issue 47). When I've tried doing this, I receive errors that say "The following variables are missing from the dataset....[insert variable used to symbolize linear part of the model)". But I believe you're code is on the right path for what needs to be done- I'll try altering my syntax to be sure it resembles yours let you know if it works.
rstan
-
R packages in Colab - either speed up install, or import library?
I have a Colab notebook with an R kernel that I'm using to share with students for remote lessons in statistics. This notebook relies on "rstanarm", which is pretty massive with the number of dependencies - it takes ~50minutes to install into a fresh Colab session with install.packages(). It seems the issue is that many of the dependencies of this package need to be compiled from source, which takes a long time on Linux distributions like Colab.
-
Help troubleshooting a an error in a brms Regression
You need to install the preview version of rstan: https://github.com/stan-dev/rstan/wiki/Configuring-C---Toolchain-for-Windows
-
Time series tutorial series
If you're on Windows, there are extra hoop to jump through, I'm afraid https://github.com/stan-dev/rstan/wiki/
- [S] Pyro/Numpyro or Stan for Bayesian modeling?
- Why does rstan depend on V8?
-
Help with error running stan model using brms package
And here are the instructions on how to build RStan from source: https://github.com/stan-dev/rstan/wiki
-
trouble installing rstan on mac
I ran the R code from here
-
Looking to do Bayesian two-way ANOVA - can someone point me in the right direction?
In R, the rstanarm package should do you well. You'll need to install rstan and make sure you have a C++ complier set up as well (instructions here: https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started)
What are some alternatives?
stan - Stan development repository. The master branch contains the current release. The develop branch contains the latest stable development. See the Developer Process Wiki for details.
MultiBUGS - Multi-core BUGS for fast Bayesian inference of large hierarchical models
tinytex - A lightweight, cross-platform, portable, and easy-to-maintain LaTeX distribution based on TeX Live
bambi - BAyesian Model-Building Interface (Bambi) in Python.
paramonte - ParaMonte: Parallel Monte Carlo and Machine Learning Library for Python, MATLAB, Fortran, C++, C.
stat_rethinking_2020 - Statistical Rethinking Course Winter 2020/2021
LightGBM - A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
rBAPS - R implementation of the BAPS software for Bayesian Analysis of Population Structure
vroom - Fast reading of delimited files
tests-as-linear - Common statistical tests are linear models (or: how to teach stats)
stanc3 - The Stan transpiler (from Stan to C++ and beyond).