SaaSHub helps you find the best software and product alternatives Learn more →
Brms Alternatives
Similar projects and alternatives to brms
-
stan
Stan development repository. The master branch contains the current release. The develop branch contains the latest stable development. See the Developer Process Wiki for details.
-
InfluxDB
Purpose built for real-time analytics at any scale. InfluxDB Platform is powered by columnar analytics, optimized for cost-efficient storage, and built with open data standards.
-
-
-
-
-
tinytex
A lightweight, cross-platform, portable, and easy-to-maintain LaTeX distribution based on TeX Live
-
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
-
brms discussion
brms reviews and mentions
-
Bayesian Structural Equation Modeling using blavaan
[2] https://paul-buerkner.github.io/brms/
-
[Q] Correlated multivariate Beta model
Maybe something like the Logistic Normal ? (e.g. see this issue from brms). If that fits what you are looking for, you can use brms to generate the Stan code for you (brms::make_stan_code()) and work from that.
-
Step-by-step example of Bayesian t-test?
Okay so first off, I recommend that you read [this](https://link.springer.com/article/10.3758/s13423-016-1221-4) article about "The Bayesian New Statistics", which highlights estimation rather than hypothesis testing from a Bayesian perspective (see Fig. 1, second row, second column). Instead of a t-test, then, we can *estimate the difference* between two groups/variables. If you want to go deeper than JASP etc, I recommend that you use [brms](https://paul-buerkner.github.io/brms/), or, if you want to go even deeper, [Stan](https://mc-stan.org/) (brms is a front-end to Stan).
-
[R] Are there methods for ridge and lasso regression that allow the introduction of weights to give more importance to some observations?
I think the brms package (https://github.com/paul-buerkner/brms) or the blavaan package (http://ecmerkle.github.io/blavaan/) have support for SEM. I've never done it myself, so I unfortunately can't give you any direction for that in particular. However, I have used stan in multi-level meta-analysis regression (combining multiple CRISPRa experiments to find determinants of CRISPRa activity, see https://github.com/timydaley/CRISPRa-sgRNA-determinants/blob/master/metaAnalysis/NeuronAndSelfRenewalMetaMixtureRegression.Rmd) and had some success.
-
Package for :Generalized Mixed Effects Models for Zero-Inflated Negative Binomial distributions ?
brms baby
-
Multiple observers
Could also be done using brms and the gr term. See this for the motivation behind this syntax.
-
I have a small sample size time series with potentially lagged predictor values which are also time series. What could be potential methods to analyse these data?
Anyway, I found I can include weights into the brm function by using gr(RE, by = var) to deal with the heterogeneous variance and it should automatically assume that each observation within a group is correlated according to the brms reference manual.
-
Brms: adding on a nonlinear component to working MLM model
This is what actually should work- I must be declaring my variables incorrectly. The issue I'm having is that what you refer to as lin , I tried calling a few things, from b to LinPred (which worked in the link here: brms issue 47). When I've tried doing this, I receive errors that say "The following variables are missing from the dataset....[insert variable used to symbolize linear part of the model)". But I believe you're code is on the right path for what needs to be done- I'll try altering my syntax to be sure it resembles yours let you know if it works.
-
A note from our sponsor - SaaSHub
www.saashub.com | 10 Sep 2024
Stats
paul-buerkner/brms is an open source project licensed under GNU General Public License v3.0 only which is an OSI approved license.
The primary programming language of brms is R.