brms VS tests-as-linear

Compare brms vs tests-as-linear and see what are their differences.

brms

brms R package for Bayesian generalized multivariate non-linear multilevel models using Stan (by paul-buerkner)

tests-as-linear

Common statistical tests are linear models (or: how to teach stats) (by lindeloev)
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
brms tests-as-linear
9 27
1,274 481
- -
9.2 0.0
5 days ago 8 months ago
R JavaScript
GNU General Public License v3.0 only -
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

brms

Posts with mentions or reviews of brms. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-11-09.

tests-as-linear

Posts with mentions or reviews of tests-as-linear. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-07-30.
  • The Truth About Linear Regression
    3 projects | news.ycombinator.com | 30 Jul 2024
    1) All common statistical tests are linear models: https://lindeloev.github.io/tests-as-linear/
  • Common statistical tests are linear models (or: how to teach stats)
    1 project | news.ycombinator.com | 9 Apr 2024
    1 project | news.ycombinator.com | 18 Feb 2024
  • Everything Is a Linear Model
    2 projects | news.ycombinator.com | 18 Feb 2024
    I knew the linked-in-the-article https://lindeloev.github.io/tests-as-linear/ which is also great. A bit meta on the widespread use of linear models: "Transcending General Linear Reality" by Andrew Abbott, DOI:10.2307/202114
  • Bayesians Moving from Defense to Offense
    2 projects | news.ycombinator.com | 25 Dec 2023
    Maybe you would find it useful to read a textbook on bayesian stats for inspiration. I can recommend Richard McElreath's "Statistical Rethinking" which makes it very clear how inflexible it is to just know recipes like t-tests or anovas.

    The canonical approach is to build a generative model with a parameter (or multiple for ~anova) that codes for the difference between groups and do inference on that parameter of interest. Most of the recipes taught in statistics classes can be modelled as a regression of some kind (this counts for frequentist stats too, see https://lindeloev.github.io/tests-as-linear/ ). Some advocate to do that inference with bayes factors. Others, like discussed elsewhere in this thread, advocate combining the resulting posterior with a cost/value function, but either way the lesson is that there is less focus on "t-test-vs-anova" because they're the same thing anyways.

  • How to cheat stats: common statistical tests are linear models
    1 project | news.ycombinator.com | 17 Oct 2023
  • Introduction to Modern Statistics
    9 projects | news.ycombinator.com | 12 Oct 2023
    I understand where you're coming from, and I like the idea for a certain kind of people: those who are very good at handling abstractions. Software engineers do have this skill, but the majority of statistics users do not. Trying to explain the similarities between these linear methods and how all is one [1] to a social scientist who doesn't like numbers nor formulas to begin with would only lead to more confusion.

    But if you ever do a randomized test with a suitable linear model to estimate the efficacy of these two methods, do let us know, that would be 10/10 :)

    [1]: https://lindeloev.github.io/tests-as-linear/#41_one_sample_t...

  • [Statistics and Probability] Common statistical tests are linear models (or: how to teach stats)
    1 project | /r/michaelaalcorn | 11 Mar 2023
  • [Q] Critique of a flowchart I made?
    1 project | /r/statistics | 31 Jan 2023
    My main critique is that these classical tests are often better explained and introduced in the concept of a regression framework. The fact that you even need a flowchart demonstrates how confusing and unintuitive the classical approach to teaching statistics is. If you learn regression, everything else becomes a special case of this much more expressive way of thinking about how to measure variation. This point is made convincingly in this post: https://lindeloev.github.io/tests-as-linear/
  • [Q] Two questions concerning the relationship between non-parametric tools and normal distribution
    1 project | /r/statistics | 20 Dec 2022
    Most parametric tests don’t assume normality. If you feel that assuming normality is not viable, you are free to choose any other distribution. This may not be immediately obvious, since most intro courses teach inference as a bunch of disjointed formulas, but it will make more sense once one learns about generalized linear models framework and realizes that common statistical tests are all linear models. There is no need to jump straight for nonparametric tests just because something isn’t normal, as cool as they are. (Also a pedantic nitpick: Mann-Whitney and Co. test difference in average ranks, not difference in means. So they are not really a nonparametric equivalent to T tests).

What are some alternatives?

When comparing brms and tests-as-linear you can also consider the following projects:

rstan - RStan, the R interface to Stan

handson-ml2 - A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

stan - Stan development repository. The master branch contains the current release. The develop branch contains the latest stable development. See the Developer Process Wiki for details.

ims - 📚 Introduction to Modern Statistics - A college-level open-source textbook with a modern approach highlighting multivariable relationships and simulation-based inference. For v1, see https://openintro-ims.netlify.app.

tinytex - A lightweight, cross-platform, portable, and easy-to-maintain LaTeX distribution based on TeX Live

bambi - BAyesian Model-Building Interface (Bambi) in Python.

textbook - The textbook Computational and Inferential Thinking: The Foundations of Data Science

stat_rethinking_2020 - Statistical Rethinking Course Winter 2020/2021

MLflow - Open source platform for the machine learning lifecycle

rBAPS - R implementation of the BAPS software for Bayesian Analysis of Population Structure

CRISPRa-sgRNA-determinants

SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured

Did you konow that R is
the 46th most popular programming language
based on number of metions?