asyncly VS .NET Runtime

Compare asyncly vs .NET Runtime and see what are their differences.

asyncly

C++ concurrent programming library (by goto-opensource)

.NET Runtime

.NET is a cross-platform runtime for cloud, mobile, desktop, and IoT apps. (by dotnet)
InfluxDB - Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
asyncly .NET Runtime
2 615
27 14,266
- 2.5%
5.0 10.0
about 1 month ago 2 days ago
C++ C#
Apache License 2.0 MIT License
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

asyncly

Posts with mentions or reviews of asyncly. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-03-25.
  • Why choose async/await over threads?
    11 projects | news.ycombinator.com | 25 Mar 2024
    One of the main benefits of async/await in Rust is that it can work in situations where you don't even have threads or dynamic memory. You can absolutely use it to write very concise code that's waiting on an interrupt on your microcontroller to have read some data coming in over I2C from some buffer. It's a higher level abstraction that allows your code to use concurrency (mostly) without having tons of interactions with the underlying runtime.

    Every major piece of software that I have worked on has implemented this in one form or another (even in non-modern C++ where you don't have any coroutine concepts, Apple's grand central dispatch,). If you don't then your business logic will either be very imperformantly block on IO, have a gazillion of threads that make development/debugging a living hell, or be littered with implementation details of the underlying runtime or a combination of all 3.

    If you don't use existing abstractions in the language (or through some library), you will end up building them yourselves, which is hard and probably overall inferior to widely used ones (if there are any). I have done so in the past, see https://github.com/goto-opensource/asyncly.

  • David Mazieres' tutorial and take on C++20 coroutines
    5 projects | news.ycombinator.com | 22 Feb 2021
    Keep in mind that these is a really basic building block where you can bring your own runtime and hook coroutines into it, not something that is at all usable out of the box. This is exacerbated by the fact that the C++ standard library is still lacking support for non-blocking futures/promises.

    To see how it can be used for actual asynchronous operations on a thread pool, take a look at asyncly, which I co-authored:

    https://github.com/LogMeIn/asyncly/blob/master/Test/Unit/fut...

.NET Runtime

Posts with mentions or reviews of .NET Runtime. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-05-08.
  • The search for easier safe systems programming
    11 projects | news.ycombinator.com | 8 May 2024
    .NET has explicit tailcalls - they are heavily used by and were made for F#.

    https://learn.microsoft.com/en-us/dotnet/api/system.reflecti...

    https://github.com/dotnet/runtime/blob/main/docs/design/feat...

  • Arena-Based Parsers
    4 projects | news.ycombinator.com | 8 May 2024
    The description indicates it is not production ready, and is archived at the same time.

    If you pull all stops in each respective language, C# will always end up winning at parsing text as it offers C structs, pointers, zero-cost interop, Rust-style struct generics, cross-platform SIMD API and simply has better compiler. You can win back some performance in Go by writing hot parts in Go's ASM dialect at much greater effort for a specific platform.

    For example, Go has to resort to this https://github.com/golang/go/blob/4ed358b57efdad9ed710be7f4f... in order to efficiently scan memory, while in C# you write the following once and it compiles to all supported ISAs with their respective SIMD instructions for a given vector width: https://github.com/dotnet/runtime/blob/56e67a7aacb8a644cc6b8... (there is a lot of code because C# covers much wider range of scenarios and does not accept sacrificing performance in odd lengths and edge cases, which Go does).

    Another example is computing CRC32: you have to write ASM for Go https://github.com/golang/go/blob/4ed358b57efdad9ed710be7f4f..., in C# you simply write standard vectorized routine once https://github.com/dotnet/runtime/blob/56e67a7aacb8a644cc6b8... (its codegen is competitive with hand-intrinsified C++ code).

    There is a lot more of this. Performance and low-level primitives to achieve it have been an area of focus of .NET for a long time, so it is disheartening to see one tenth of effort in Go to receive so much spotlight.

  • Airline keeps mistaking 101-year-old woman for baby
    1 project | news.ycombinator.com | 28 Apr 2024
    It's an interesting "time is a circle" problem given that a century only has 100 years and then we loop around again. 2-digit years is convenient for people in many situations but they are very lossy, and horrible for machines.

    It reminds me of this breaking change to .Net from last year.[1][2] Maybe AA just needs to update .Net which would pad them out until the 2050's when someone born in the 1950s would be having...exactly the same problem in the article. (It is configurable now so you could just keep pushing it each decade, until it wraps again).

    Or they could use 4-digit years.

    [1] https://github.com/dotnet/runtime/issues/75148

  • The software industry rapidly convergng on 3 languages: Go, Rust, and JavaScript
    1 project | news.ycombinator.com | 24 Apr 2024
    These can also be passed as arguments to `dotnet publish` if necessary.

    Reference:

    - https://learn.microsoft.com/en-us/dotnet/core/deploying/nati...

    - https://github.com/dotnet/runtime/blob/main/src/coreclr/nati...

    - https://github.com/dotnet/runtime/blob/5b4e770daa190ce69f402... (full list of recognized keys for IlcInstructionSet)

  • The Performance Impact of C++'s `final` Keyword
    6 projects | news.ycombinator.com | 22 Apr 2024
    Yes, that is true. I'm not sure about JVM implementation details but the reason the comment says "virtual and interface" calls is to outline the difference. Virtual calls in .NET are sufficiently close[0] to virtual calls in C++. Interface calls, however, are coded differently[1].

    Also you are correct - virtual calls are not terribly expensive, but they encroach on ever limited* CPU resources like indirect jump and load predictors and, as noted in parent comments, block inlining, which is highly undesirable for small and frequently called methods, particularly when they are in a loop.

    * through great effort of our industry to take back whatever performance wins each generation brings with even more abstractions that fail to improve our productivity

    [0] https://github.com/dotnet/coreclr/blob/4895a06c/src/vm/amd64...

    [1] https://github.com/dotnet/runtime/blob/main/docs/design/core... (mind you, the text was initially written 18 ago, wow)

  • Java 23: The New Features Are Officially Announced
    5 projects | news.ycombinator.com | 17 Apr 2024
    If you care about portable SIMD and performance, you may want to save yourself trouble and skip to C# instead, it also has an extensive guide to using it: https://github.com/dotnet/runtime/blob/69110bfdcf5590db1d32c...

    CoreLib and many new libraries are using it heavily to match performance of manually intensified C++ code.

  • Locally test and validate your Renovate configuration files
    4 projects | dev.to | 9 Apr 2024
    DEBUG: packageFiles with updates (repository=local) "config": { "nuget": [ { "deps": [ { "datasource": "nuget", "depType": "nuget", "depName": "Microsoft.Extensions.Hosting", "currentValue": "7.0.0", "updates": [ { "bucket": "non-major", "newVersion": "7.0.1", "newValue": "7.0.1", "releaseTimestamp": "2023-02-14T13:21:52.713Z", "newMajor": 7, "newMinor": 0, "updateType": "patch", "branchName": "renovate/dotnet-monorepo" }, { "bucket": "major", "newVersion": "8.0.0", "newValue": "8.0.0", "releaseTimestamp": "2023-11-14T13:23:17.653Z", "newMajor": 8, "newMinor": 0, "updateType": "major", "branchName": "renovate/major-dotnet-monorepo" } ], "packageName": "Microsoft.Extensions.Hosting", "versioning": "nuget", "warnings": [], "sourceUrl": "https://github.com/dotnet/runtime", "registryUrl": "https://api.nuget.org/v3/index.json", "homepage": "https://dot.net/", "currentVersion": "7.0.0", "isSingleVersion": true, "fixedVersion": "7.0.0" } ], "packageFile": "RenovateDemo.csproj" } ] }
  • Chrome Feature: ZSTD Content-Encoding
    10 projects | news.ycombinator.com | 1 Apr 2024
    https://github.com/dotnet/runtime/issues/59591

    Support zstd Content-Encoding:

  • Writing x86 SIMD using x86inc.asm (2017)
    3 projects | news.ycombinator.com | 26 Mar 2024
  • Why choose async/await over threads?
    11 projects | news.ycombinator.com | 25 Mar 2024
    We might not be that far away already. There is this issue[1] on Github, where Microsoft and the community discuss some significant changes.

    There is still a lot of questions unanswered, but initial tests look promising.

    Ref: https://github.com/dotnet/runtime/issues/94620

What are some alternatives?

When comparing asyncly and .NET Runtime you can also consider the following projects:

C-Coroutines - Coroutines for C.

Ryujinx - Experimental Nintendo Switch Emulator written in C#

cppcoro - A library of C++ coroutine abstractions for the coroutines TS

ASP.NET Core - ASP.NET Core is a cross-platform .NET framework for building modern cloud-based web applications on Windows, Mac, or Linux.

coro-chat - Playing with the C++17 Coroutines TS to implement a simple chat server

actix-web - Actix Web is a powerful, pragmatic, and extremely fast web framework for Rust.

WASI - WebAssembly System Interface

CoreCLR - CoreCLR is the runtime for .NET Core. It includes the garbage collector, JIT compiler, primitive data types and low-level classes.

vgpu_unlock - Unlock vGPU functionality for consumer grade GPUs.

runtimelab - This repo is for experimentation and exploring new ideas that may or may not make it into the main dotnet/runtime repo.

dotnet-wasi-sdk - Packages for building .NET projects as standalone WASI-compliant modules

sdk - Core functionality needed to create .NET Core projects, that is shared between Visual Studio and CLI