Bad PDFs = bad UX. Slow load times, broken annotations, clunky UX frustrates users. Nutrient’s PDF SDKs gives seamless document experiences, fast rendering, annotations, real-time collaboration, 100+ features. Used by 10K+ devs, serving ~half a billion users worldwide. Explore the SDK for free. Learn more →
Clownfish Alternatives
Similar projects and alternatives to clownfish
-
-
Nutrient
Nutrient - The #1 PDF SDK Library. Bad PDFs = bad UX. Slow load times, broken annotations, clunky UX frustrates users. Nutrient’s PDF SDKs gives seamless document experiences, fast rendering, annotations, real-time collaboration, 100+ features. Used by 10K+ devs, serving ~half a billion users worldwide. Explore the SDK for free.
-
-
evals
Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.
-
-
-
-
-
CodeRabbit
CodeRabbit: AI Code Reviews for Developers. Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
-
-
-
-
-
-
-
-
-
-
-
-
Chat-Markup-Language
This is a Repo defining a set of rules for ChatGPT to use when sending responses to a user
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
clownfish discussion
clownfish reviews and mentions
-
Show HN: LLMs can generate valid JSON 100% of the time
I'm not sure how this is different than:
https://github.com/1rgs/jsonformer
or
https://github.com/newhouseb/clownfish
or
https://github.com/mkuchnik/relm
or
https://github.com/ggerganov/llama.cpp/pull/1773
or
https://github.com/Shopify/torch-grammar
Overall there are a ton of these logit based guidance systems, the reason they don't get tons of traction is the SOTA models are behind REST APIs that don't enable this fine-grained approach.
Those models perform so much better that people generally settle for just re-requesting until they get the correct format (and with GPT-4 that ends up being a fairly rare occurrence in my experience)
- OpenAI Function calling and API updates
-
Adding GPT to a web app. The real experience.
I can see some specific problems there, like malformed json (or json not matching intended schema being generated). Approaches like https://github.com/1rgs/jsonformer and https://github.com/newhouseb/clownfish could be interesting there, as well as approaches to validate outputs like https://medium.com/@markherhold/validating-json-patch-requests-44ca5981a7fc (references jsonpatch which could be interesting as well, but the approach is somewhat agnostic to how the changes actually get applied while still allowing you to enforce structure around what changes and how).
-
When you lose the ability to write, you also lose some of your ability to think
https://github.com/newhouseb/clownfish
Structural Alignment: Modifying Transformers (like GPT) to Follow a JSON Schema
- Clownfish: Constrained Decoding for LLMs Against JSON Schema
-
Jsonformer: A bulletproof way to generate structured output from LLMs
Oh nice! I built a similar system a few weeks ago: https://github.com/newhouseb/clownfish
I think the main differentiating factor here is that this is better if you have a simpler JSON schema without enums or oneOf constraints. If you do have these constraints, i.e. let's say you wanted an array of different types that represented a items on a menu { kind: pizza, toppings: [pepperoni] } or { kind: ice_cream, flavor: vanilla | strawberry } then you would need something more sophisticated like clownfish that can ask the LLM to pick specific properties.
-
Prompt injection: what’s the worst that can happen?
And on the other end, there's https://github.com/newhouseb/clownfish to force the model to produce structured output.
-
Teaching ChatGPT to Speak My Son’s Invented Language
It doesn't help with repetition, but when it comes to force structure on the output data, this approach looks interesting:
https://github.com/newhouseb/clownfish
TL;DR: it exploits the fact that the model returns probabilities for all the possible following tokens to enforce a JSON schema on the output as it is produced, backtracking as needed.
- Structural Alignment: Modifying Transformers (Like GPT) to Follow a JSON Schema
- Structural Alignment of LLMs with ControLogits
-
A note from our sponsor - Nutrient
nutrient.io | 15 Feb 2025
Stats
newhouseb/clownfish is an open source project licensed under MIT License which is an OSI approved license.
The primary programming language of clownfish is Python.