Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR. Learn more →
Jsonformer Alternatives
Similar projects and alternatives to jsonformer
-
-
CodeRabbit
CodeRabbit: AI Code Reviews for Developers. Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
-
-
-
-
guidance
Discontinued A guidance language for controlling large language models. [Moved to: https://github.com/guidance-ai/guidance] (by microsoft)
-
-
FLiPStackWeekly
FLaNK AI Weekly covering Apache NiFi, Apache Flink, Apache Kafka, Apache Spark, Apache Iceberg, Apache Ozone, Apache Pulsar, and more...
-
Nutrient
Nutrient – The #1 PDF SDK Library, trusted by 10K+ developers. Other PDF SDKs promise a lot - then break. Laggy scrolling, poor mobile UX, tons of bugs, and lack of support cost you endless frustrations. Nutrient’s SDK handles billion-page workloads - so you don’t have to debug PDFs. Used by ~1 billion end users in more than 150 different countries.
-
-
WizardLM
Discontinued Family of instruction-following LLMs powered by Evol-Instruct: WizardLM, WizardCoder and WizardMath
-
-
-
-
-
-
-
-
-
pydantic-chatcompletion
Wraps openai.ChatCompletion to produce pydantic model output via schema prompt and error feedback.
-
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
jsonformer discussion
jsonformer reviews and mentions
- Forcing AI to Follow a Specific Answer Pattern Using GBNF Grammar
-
Refact LLM: New 1.6B code model reaches 32% HumanEval and is SOTA for the size
- Tools like jsonformer https://github.com/1rgs/jsonformer are not possible with OpenAIs API.
-
Show HN: LLMs can generate valid JSON 100% of the time
How does this compare in terms of latency, cost, and effectiveness to jsonformer? https://github.com/1rgs/jsonformer
-
Ask HN: Explain how size of input changes ChatGPT performance
You're correct with interpreting how the model works wrt it returning tokens one at a time. The model returns one token, and the entire context window gets shifted right by one to for account it when generating the next one.
As for model performance at different context sizes, it's seems a bit complicated. From what I understand, even if models are tweaked (for example using the superHOT RoPE hack or sparse attention) to be able to use longer contexts, they still have to be fined tuned on input of this increased context to actually utilize it, but performance seems to degrade regardless as input length increases.
For your question about fine tuning models to respond with only "yes" or "no", I recommend looking into how the jsonformers library works: https://github.com/1rgs/jsonformer . Essentially, you still let the model generate many tokens for the next position, and only accept the ones that satisfy certain criteria (such as the token for "yes" and the token for "no".
You can do this with openAI API too, using tiktoken https://twitter.com/AAAzzam/status/1669753722828730378?t=d_W... . Be careful though as results will be different on different selections of tokens, as "YES", "Yes", "yes", etc are all different tokens to the best of my knowledge
- A framework to securely use LLMs in companies – Part 1: Overview of Risks
-
LLMs for Schema Augmentation
From here, we just need to continue generating tokens until we get to a closing quote. This approach was borrowed from Jsonformer which uses a similar approach to induce LLMs to generate structured output. Continuing to do so for each property using Replit's code LLM gives the following output:
-
Doesn't a 4090 massively overpower a 3090 for running local LLMs?
https://github.com/1rgs/jsonformer or https://github.com/microsoft/guidance may help get better results, but I ended up with a bit more of a custom solution.
-
“Sam altman won't tell you that GPT-4 has 220B parameters and is 16-way mixture model with 8 sets of weights”
I think function calling is just JSONformer idk: https://github.com/1rgs/jsonformer
- Inference Speed vs. Quality Hacks?
-
Best bet for parseable output?
jsonformer: https://github.com/1rgs/jsonformer
-
A note from our sponsor - CodeRabbit
coderabbit.ai | 15 Feb 2025
Stats
1rgs/jsonformer is an open source project licensed under MIT License which is an OSI approved license.
The primary programming language of jsonformer is Jupyter Notebook.