uproot5 VS julia

Compare uproot5 vs julia and see what are their differences.

InfluxDB - Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
uproot5 julia
2 350
218 44,534
1.4% 0.5%
9.2 10.0
5 days ago 4 days ago
Python Julia
BSD 3-clause "New" or "Revised" License MIT License
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

uproot5

Posts with mentions or reviews of uproot5. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-12-04.
  • Potential of the Julia programming language for high energy physics computing
    10 projects | news.ycombinator.com | 4 Dec 2023
    > I wasn't proposing ROOT to be reimplemented in JS. That was what the GP attributed to me.

    Sorry for assuming that. I really felt the pain of thinking of possibility of combining two things I hate so much together (JS+ROOT)

    > "Laypeople" may also think that code is optimized to the last cycle in something like HEP simulations. It's made fast enough and the optimization is nowhere near the level of e.g. graphics heavy games.

    I understand that in other areas there might be more sophisticated optimizations, but does not change things much inside HEP field community. And it is not optimized only for simulations but for other things too. It is not one problem optimization.

    > Real-time usage like high frequency large data collection will probably never happen on the "single language". But I'd guess ROOT is not used at that level either? Also at least last time I checked, ROOT is moving to Python (probably not for the hottest loops of the simulation though).

    I did not mean to indicate that ROOT is being used to handle the online processing (In HEP terms). It is usually handled via optimized C++ compiled code. My idea is that you will probably never use JS or any interpreted language (or anything other than C++ to be pessimistic) for that. ROOT at the end of the day is much closer to C++ than anything else. So learning curve wouldn't be that much if you come with some C++ knowledge initially.

    > Also at least last time I checked, ROOT is moving to Python (probably not for the hottest loops of the simulation though).

    I think you mean PyROOT [1]? This is the official python ROOT interface It provides a set of Python bindings to the ROOT C++ libraries, allowing Python scripts to interact directly with ROOT classes and methods as if they were native Python. But that does not represent and re-writing. It makes things easier for end users who are doing analysis though, while be efficient in terms of performance, especially for operations that are heavily optimized in ROOT.

    There is also uproot [2] which is a purely Python-based reader and writer of ROOT files. It is not a part of the official ROOT project and does not depend on the ROOT libraries. Instead, uproot re-implements the I/O functionalities of ROOT in Python. However, it does not provide an interface to the full range of ROOT functionalities. It is particularly useful for integrating ROOT data into a Python-based data analysis pipeline, where libraries like NumPy, SciPy, Matplotlib, and Pandas ..etc are used.

    > Off-topic: C++ interpretation like done in ROOT seems like a really bad idea.)

    I will agree with you. But to be fair the purpose of ROOT is interactive data analysis but over the decades a lot of things gets added, and many experiments had their own soft forks and things started to get very messy quickly. So that there is no much inertia to fix problems and introduce improvements.

    [1] https://root.cern/manual/python/

    [2] https://github.com/scikit-hep/uproot5

  • Root with python
    2 projects | /r/ParticlePhysics | 22 Jun 2021
    Besides PyROOT, you can also use uproot to read ROOT files, if you want to avoid the ROOT-dependency. The current version (uproot4) does not yet support writing ROOT files, but the previous/deprecated version (uproot3) does. (Please note: uproot is not maintained by the ROOT project team).

julia

Posts with mentions or reviews of julia. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-03-06.
  • Top Paying Programming Technologies 2024
    19 projects | dev.to | 6 Mar 2024
    34. Julia - $74,963
  • Optimize sgemm on RISC-V platform
    6 projects | news.ycombinator.com | 28 Feb 2024
    I don't believe there is any official documentation on this, but https://github.com/JuliaLang/julia/pull/49430 for example added prefetching to the marking phase of a GC which saw speedups on x86, but not on M1.
  • Dart 3.3
    2 projects | news.ycombinator.com | 15 Feb 2024
    3. dispatch on all the arguments

    the first solution is clean, but people really like dispatch.

    the second makes calling functions in the function call syntax weird, because the first argument is privileged semantically but not syntactically.

    the third makes calling functions in the method call syntax weird because the first argument is privileged syntactically but not semantically.

    the closest things to this i can think of off the top of my head in remotely popular programming languages are: nim, lisp dialects, and julia.

    nim navigates the dispatch conundrum by providing different ways to define free functions for different dispatch-ness. the tutorial gives a good overview: https://nim-lang.org/docs/tut2.html

    lisps of course lack UFCS.

    see here for a discussion on the lack of UFCS in julia: https://github.com/JuliaLang/julia/issues/31779

    so to sum up the answer to the original question: because it's only obvious how to make it nice and tidy like you're wanting if you sacrifice function dispatch, which is ubiquitous for good reason!

  • Julia 1.10 Highlights
    1 project | news.ycombinator.com | 27 Dec 2023
    https://github.com/JuliaLang/julia/blob/release-1.10/NEWS.md
  • Best Programming languages for Data Analysis📊
    4 projects | dev.to | 7 Dec 2023
    Visit official site: https://julialang.org/
  • Potential of the Julia programming language for high energy physics computing
    10 projects | news.ycombinator.com | 4 Dec 2023
    No. It runs natively on ARM.

    julia> versioninfo() Julia Version 1.9.3 Commit bed2cd540a1 (2023-08-24 14:43 UTC) Build Info: Official https://julialang.org/ release

  • Rust std:fs slower than Python
    7 projects | news.ycombinator.com | 29 Nov 2023
    https://github.com/JuliaLang/julia/issues/51086#issuecomment...

    So while this "fixes" the issue, it'll introduce a confusing time delay between you freeing the memory and you observing that in `htop`.

    But according to https://jemalloc.net/jemalloc.3.html you can set `opt.muzzy_decay_ms = 0` to remove the delay.

    Still, the musl author has some reservations against making `jemalloc` the default:

    https://www.openwall.com/lists/musl/2018/04/23/2

    > It's got serious bloat problems, problems with undermining ASLR, and is optimized pretty much only for being as fast as possible without caring how much memory you use.

    With the above-mentioned tunables, this should be mitigated to some extent, but the general "theme" (focusing on e.g. performance vs memory usage) will likely still mean "it's a tradeoff" or "it's no tradeoff, but only if you set tunables to what you need".

  • Eleven strategies for making reproducible research the norm
    1 project | news.ycombinator.com | 25 Nov 2023
    I have asked about Julia's reproducibility story on the Guix mailing list in the past, and at the time Simon Tournier didn't think it was promising. I seem to recall Julia itself didnt have a reproducible build. All I know now is that github issue is still not closed.

    https://github.com/JuliaLang/julia/issues/34753

  • Julia as a unifying end-to-end workflow language on the Frontier exascale system
    5 projects | news.ycombinator.com | 19 Nov 2023
    I don't really know what kind of rebuttal you're looking for, but I will link my HN comments from when this was first posted for some thoughts: https://news.ycombinator.com/item?id=31396861#31398796. As I said, in the linked post, I'm quite skeptical of the business of trying to assess relative buginess of programming in different systems, because that has strong dependencies on what you consider core vs packages and what exactly you're trying to do.

    However, bugs in general suck and we've been thinking a fair bit about what additional tooling the language could provide to help people avoid the classes of bugs that Yuri encountered in the post.

    The biggest class of problems in the blog post, is that it's pretty clear that `@inbounds` (and I will extend this to `@assume_effects`, even though that wasn't around when Yuri wrote his post) is problematic, because it's too hard to write. My proposal for what to do instead is at https://github.com/JuliaLang/julia/pull/50641.

    Another common theme is that while Julia is great at composition, it's not clear what's expected to work and what isn't, because the interfaces are informal and not checked. This is a hard design problem, because it's quite close to the reasons why Julia works well. My current thoughts on that are here: https://github.com/Keno/InterfaceSpecs.jl but there's other proposals also.

  • Getaddrinfo() on glibc calls getenv(), oh boy
    10 projects | news.ycombinator.com | 16 Oct 2023
    Doesn't musl have the same issue? https://github.com/JuliaLang/julia/issues/34726#issuecomment...

    I also wonder about OSX's libc. Newer versions seem to have some sort of locking https://github.com/apple-open-source-mirror/Libc/blob/master...

    but older versions (from 10.9) don't have any lockign: https://github.com/apple-oss-distributions/Libc/blob/Libc-99...

What are some alternatives?

When comparing uproot5 and julia you can also consider the following projects:

uproot3 - ROOT I/O in pure Python and NumPy.

jax - Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

awkward - Manipulate JSON-like data with NumPy-like idioms.

NetworkX - Network Analysis in Python

pyhf - pure-Python HistFactory implementation with tensors and autodiff

Lua - Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural programming, object-oriented programming, functional programming, data-driven programming, and data description.

vaex - Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML, visualization and exploration of big tabular data at a billion rows per second 🚀

rust-numpy - PyO3-based Rust bindings of the NumPy C-API

iminuit - Jupyter-friendly Python interface for C++ MINUIT2

Numba - NumPy aware dynamic Python compiler using LLVM

vddfit

F# - Please file issues or pull requests here: https://github.com/dotnet/fsharp