tensorflow
Keras
Our great sponsors
- Onboard AI - Learn any GitHub repo in 59 seconds
- InfluxDB - Collect and Analyze Billions of Data Points in Real Time
- SaaSHub - Software Alternatives and Reviews
tensorflow | Keras | |
---|---|---|
220 | 74 | |
179,270 | 59,979 | |
0.4% | 0.5% | |
10.0 | 9.9 | |
about 15 hours ago | about 14 hours ago | |
C++ | Python | |
Apache License 2.0 | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
tensorflow
-
🔥🚀 Top 10 Open-Source Must-Have Tools for Crafting Your Own Chatbot 🤖💬
To get up to speed with TensorFlow, check their quickstart Support TensorFlow on GitHub ⭐
- One .gitignore to rule them all
-
10 Github repositories to achieve Python mastery
Explore here.
-
GitHub and Developer Ecosystem Control
Part of the major userbase pull in GitHub revolves around hosting a considerable number of popular projects including Angular, React, Kubernetes, cpython, Ruby, tensorflow, and well even the software that powers this site Forem.
-
Non-determinism in GPT-4 is caused by Sparse MoE
Right but that's not an inherent GPU determinism issue. It's a software issue.
https://github.com/tensorflow/tensorflow/issues/3103#issueco... is correct that it's not necessary, it's a choice.
Your line of reasoning appears to be "GPUs are inherently non-deterministic don't be quick to judge someone's code" which as far as I can tell is dead wrong.
Admittedly there are some cases and instructions that may result in non-determinism but they are inherently necessary. The author should thinking carefully before introducing non-determinism. There are many scenarios where it is irrelevant, but ultimately the issue we are discussing here isn't the GPU's fault.
-
Can someone explain how keras code gets into the Tensorflow package?
and things like y = layers.ELU()(y) work as expected. I wanted to see a list of the available layers so I went to the Tensorflow GitHub repository and to the keras directory. There's a warning in that directory that says:
-
How to do deep learning with Caffe?
You can use Tensorflow's deep learning API for this.
-
Ask HN: What is a AI chip and how does it work?
This is indeed the bread-and-butter, but there is use of all sorts of standard linear algebra algorithms. You can check various xla-related (accelerated linear algebra) folders in tensorflow or torch folders in pytorch to see the list of what is used [1],[2]
[1] https://github.com/tensorflow/tensorflow/tree/8d9b35f442045b...
[2] https://github.com/pytorch/pytorch/blob/6e3e3dd477e0fb9768ee...
-
Mastering Data Science: Top 10 GitHub Repos You Need to Know
2. TensorFlow Developed by the Google Brain team, TensorFlow is a powerful open-source machine learning framework that’s perfect for deep learning and neural network projects. With TensorFlow, you can build and train complex models using an intuitive and flexible API, making it an essential tool for any data scientist looking to delve into deep learning.
-
Tensorflow V2 - LSTM Penn Tree Bank Dataset
I found the official Tensorflow V1 code from a Github branch here (https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/models/rnn/ptb/ptb_word_lm.py). All code necessary to run that file is in the /ptb folder (except data).
Keras
-
Keras 3.0
All breaking changes are listed here: https://github.com/keras-team/keras/issues/18467
You can use this migration guide to identify and fix each of these issues (and further, making your code run on JAX or PyTorch): https://keras.io/guides/migrating_to_keras_3/
-
Can someone explain how keras code gets into the Tensorflow package?
I'm guessing the "real" keras code is coming from the keras repository. Is that a correct assumption? How does that version of Keras get there? If I wanted to write my own activation layer next to ELU, where exactly would I do that?
-
How popular are libraries in each technology
Other popular machine learning tools include PyTorch, Keras, and Scikit-learn. PyTorch is an open-source machine learning library developed by Facebook that is known for its ease of use and flexibility. Keras is a high-level neural networks API that is written in Python and is known for its simplicity. Scikit-learn is a machine learning library for Python that is used for data analysis and data mining tasks.
-
List of AI-Models
Click to Learn more...
-
I got advice on building ai apps.
Keras documentation: https://keras.io/
-
Mastering Data Science: Top 10 GitHub Repos You Need to Know
3. Keras Keras is a high-level neural networks API written in Python that’s built on top of TensorFlow. It’s designed to enable fast experimentation with deep learning, allowing you to build and train models with just a few lines of code. If you’re new to deep learning or just want a more user-friendly interface, Keras is the way to go.
-
How to query pandas DataFrames with SQL
Pandas comes with many complex tabular data operations. And, since it exists in a Python environment, it can be coupled with lots of other powerful libraries, such as Requests (for connecting to other APIs), Matplotlib (for plotting data), Keras (for training machine learning models), and many more.
-
The Essentials of a Contributor-friendly Open-source Project
Our trick is to support GitHub Codespaces, which provides a web-based Visual Studio Code IDE. The best thing is you can specify a Dockerfile with all the required dependency software installed. With one click on the repo’s webpage, your contributors are ready to code. Here is our setup for your reference.
-
DO YOU YAML?
If you’re looking for further resources on running TensorFlow and Keras on a newer MacBook, I recommend checking out this YouTube video: How to Install Keras GPU for Mac M1/M2 with Conda
-
Doing k-fold analysis
The thing that pops right into my mind is the following issue: https://github.com/keras-team/keras/issues/13118 People are still reporting memory leaks when calling model.predict and I wouldn't be surprised if model.fit also leaked when called multiple times. Maybe this is a good starting point for your investigation. If this is unrelated, I'm sorry in forward.
What are some alternatives?
PaddlePaddle - PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
Prophet - Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
MLP Classifier - A handwritten multilayer perceptron classifer using numpy.
Pandas - Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more
scikit-learn - scikit-learn: machine learning in Python
LightGBM - A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
LightFM - A Python implementation of LightFM, a hybrid recommendation algorithm.
xgboost - Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
MLflow - Open source platform for the machine learning lifecycle
PyBrain