tensorflow
Pandas
tensorflow | Pandas | |
---|---|---|
229 | 407 | |
185,359 | 43,142 | |
0.6% | 0.7% | |
10.0 | 10.0 | |
2 days ago | 8 days ago | |
C++ | Python | |
Apache License 2.0 | BSD 3-clause "New" or "Revised" License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
tensorflow
-
Las 10 Mejores Herramientas de Inteligencia Artificial de Código Abierto
(https://dev-to-uploads.s3.amazonaws.com/uploads/articles/adae9icuiza0lhd532pc.png)
- TensorFlow: Democratizing Machine Learning with Open Source Power
- Release TensorFlow 2.17.0 · TensorFlow/TensorFlow
-
Top 17 Fast-Growing Github Repo of 2024
TensorFlow
-
Awesome List
GitHub Repository - The main TensorFlow repository.
-
Rebuilding TensorFlow 2.8.4 on Ubuntu 22.04 to patch vulnerabilities
The official 2.8.4 container was published in Nov 2022. That's 1.5 years of OS updates at least. I looked up the 2.8.4 source and found that it's using Ubuntu 20.04 as the base OS. Of note, we're using the x86_64 architecture according to the container image layer: ENV NVARCH=x86_64.
-
Side Quest Devblog #1: These Fakes are getting Deep
# L2-normalize the encoding tensors image_encoding = tf.math.l2_normalize(image_encoding, axis=1) audio_encoding = tf.math.l2_normalize(audio_encoding, axis=1) # Find euclidean distance between image_encoding and audio_encoding # Essentially trying to detect if the face is saying the audio # Will return nan without the 1e-12 offset due to https://github.com/tensorflow/tensorflow/issues/12071 d = tf.norm((image_encoding - audio_encoding) + 1e-12, ord='euclidean', axis=1, keepdims=True) discriminator = keras.Model(inputs=[image_input, audio_input], outputs=[d], name="discriminator")
-
Google lays off its Python team
[3]: https://github.com/tensorflow/tensorflow/graphs/contributors
- TensorFlow-metal on Apple Mac is junk for training
-
🔥🚀 Top 10 Open-Source Must-Have Tools for Crafting Your Own Chatbot 🤖💬
To get up to speed with TensorFlow, check their quickstart Support TensorFlow on GitHub ⭐
Pandas
-
Data Visualisation Basics
pandas: while this library includes some convenient methods for visualizing data that hook into matplotlib, we'll mainly be using it for its main purpose as a general tool for working with data (https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf).
- Farewell Pandas, and thanks for all the fish
-
JIRA Analytics with Pandas
Many day-to-day tasks may require one-time data analysis, so writing services every time doesn't pay off. You can treat JIRA as a data source and use a typical data analytics tool belt. For example, you may take Jupyter, fetch the list of recent bugs in the project, prepare a list of "features" (attributes valuable for analysis), utilize pandas to calculate the statistics, and try to forecast trends using scikit-learn. In this article, I would like to explain how to do it.
-
Streamlit 101: The fundamentals of a Python data app
It's compatible with a wide range of data libraries, including Pandas, NumPy, and Altair. Streamlit integrates with all the latest tools in generative AI, such as any LLM, vector database, or various AI frameworks like LangChain, LlamaIndex, or Weights & Biases. Streamlit’s chat elements make it especially easy to interact with AI so you can build chatbots that “talk to your data.”
-
Useful Python Libraries for AI/ML
pandas - The standard data analysis and manipulation tool numpy - scientific computing library seaborn - statistical data visualization sklearn - basic machine learning and predictive analysis CausalML - a suite of uplift modeling and causal inference methods PyTorch - professional deep learning framework PivotTablejs - Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook LazyPredict - build and work with and compare multiple models phidata - Build AI Assistants with memory, knowledge and tools. Lux - automates visualization and data analysis pycaret - low-code machine learning library. really nice Cleanlab - for when you are working with messy data drawdata - draw a dataset from inside Jupyter pyforest - lazy import popular data science libs streamlit - simple ui builder, useful for demonstrating ML results
-
7 Python Excel Libraries: In-Depth Review for Developers
Pandas is a powerful data manipulation and analysis library that provides easy-to-use data structures and data analysis tools. It includes the read_excel and to_excel functions to read from and write to Excel files. It leverages third-party libraries like OpenPyXL and xlrd to read from and write to Excel files.
-
Essential Deep Learning Checklist: Best Practices Unveiled
How to Accomplish: Use statistical analysis tools and libraries (e.g., Pandas for tabular data) to calculate and visualize these characteristics. For image datasets, custom scripts to analyze object sizes or mask distributions can be useful. Tools like OpenCV can assist in analyzing image properties, while libraries like Pandas and NumPy are excellent for tabular and numerical analysis. To address class imbalances, consider techniques like oversampling, undersampling, or synthetic data generation with SMOTE.
-
Awesome List
Pandas - A powerful data analysis and manipulation library for Python. Pandas Documentation - Official documentation.
-
The ultimate guide to creating a secure Python package
It's also possible for you to give a package an alias by using the as keyword. For instance, you could use the pandas package as pd like this:
- The Birth of Parquet
What are some alternatives?
PaddlePaddle - PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
Cubes - [NOT MAINTAINED] Light-weight Python OLAP framework for multi-dimensional data analysis
Prophet - Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
orange - 🍊 :bar_chart: :bulb: Orange: Interactive data analysis
LightGBM - A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Airflow - Apache Airflow - A platform to programmatically author, schedule, and monitor workflows
scikit-learn - scikit-learn: machine learning in Python
Keras - Deep Learning for humans
LightFM - A Python implementation of LightFM, a hybrid recommendation algorithm.
Pytorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration
xgboost - Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
pyexcel - Single API for reading, manipulating and writing data in csv, ods, xls, xlsx and xlsm files