Apache Spark VS luigi

Compare Apache Spark vs luigi and see what are their differences.

Apache Spark

Apache Spark - A unified analytics engine for large-scale data processing (by apache)

luigi

Luigi is a Python module that helps you build complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization etc. It also comes with Hadoop support built in. (by spotify)
InfluxDB – Built for High-Performance Time Series Workloads
InfluxDB 3 OSS is now GA. Transform, enrich, and act on time series data directly in the database. Automate critical tasks and eliminate the need to move data externally. Download now.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
Apache Spark luigi
121 14
41,083 18,270
0.6% 0.5%
10.0 8.7
6 days ago 22 days ago
Scala Python
Apache License 2.0 Apache License 2.0
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

Apache Spark

Posts with mentions or reviews of Apache Spark. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2025-04-22.
  • Every Database Will Support Iceberg — Here's Why
    10 projects | dev.to | 22 Apr 2025
    Apache Iceberg defines a table format that separates how data is stored from how data is queried. Any engine that implements the Iceberg integration — Spark, Flink, Trino, DuckDB, Snowflake, RisingWave — can read and/or write Iceberg data directly.
  • How to Reduce Big Data Analytics Costs by 90% with Karpenter and Spark
    3 projects | dev.to | 21 Apr 2025
    Apache Spark powers large-scale data analytics and machine learning, but as workloads grow exponentially, traditional static resource allocation leads to 30–50% resource waste due to idle Executors and suboptimal instance selection.
  • Apache Spark VS cocoindex - a user suggested alternative
    2 projects | 1 Apr 2025
  • Unveiling the Apache License 2.0: A Deep Dive into Open Source Freedom
    3 projects | dev.to | 11 Mar 2025
    One of the key attributes of Apache License 2.0 is its flexible nature. Permitting use in both proprietary and open source environments, it has become the go-to choice for innovative projects ranging from the Apache HTTP Server to large-scale initiatives like Apache Spark and Hadoop. This flexibility is not solely legal; it is also philosophical. The license is designed to encourage transparency and maintain a healthy balance between freedom and accountability, ultimately making it easier for developers to adapt and contribute without restrictive legal barriers. Another modern twist discussed in the article is the concept of dual licensing. Dual licensing can offer an attractive method for additional commercial exploitation while still upholding open source principles. However, as the article cautions, dual licensing involves legal intricacy and demands rigor in managing Contributor License Agreements (CLAs), a challenge that the open source community navigates with ongoing debates. For developers looking to understand similar innovative approaches to licensing, further information can be explored at License Token.
  • The Application of Java Programming In Data Analysis and Artificial Intelligence
    1 project | dev.to | 10 Mar 2025
    [1] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson, 2020. [2] F. Chollet, Deep Learning with Python. Manning Publications, 2018. [3] C. C. Aggarwal, Data Mining: The Textbook. Springer, 2015. [4] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters," Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008. [5] Apache Software Foundation, "Apache Spark: Lightning-Fast Unified Analytics Engine," Available: https://spark.apache.org/. [6] Java Community Process, "Java Machine Learning Libraries and Frameworks," Available: https://www.oracle.com/java/.
  • Apache Spark: Revolutionizing Big Data with Sustainable Open Source Funding
    1 project | dev.to | 6 Mar 2025
    Apache Spark isn’t just a framework for distributed data processing; it’s a rich ecosystem that includes libraries for machine learning, stream processing, and graph processing. A key aspect of Spark’s ecosystem is its reliance on community contributions. Developers from around the world collaborate on its GitHub repository, ensuring that Spark remains at the cutting edge of technology. The governance process, characterized by transparency and meritocracy, builds trust among contributors and sponsors alike. An essential component of Apache Spark’s model is its use of the Apache 2.0 license. This permissive license not only shields contributors with patent protection but also allows enterprises to integrate Spark into proprietary systems without legal hurdles. The license enables a free flow of innovation—companies can both use and contribute to Spark’s codebase, leading to enhancements that benefit the entire community. The funding mechanisms sustaining Apache Spark are as diverse as they are innovative. Corporate sponsorships play a significant role, with companies dedicating resources and finances to support ongoing development. Additionally, grant programs and community donations help maintain an ecosystem where improvements and new features are continuously shared with users worldwide. These sustainable funding practices ensure that Apache Spark can meet the demands of real-time analytics and high-volume data processing.
  • Automating Enhanced Due Diligence in Regulated Applications
    9 projects | dev.to | 13 Feb 2025
    If you're designing an event-based pipeline, you can use a data streaming tool like Kafka to process data as it's collected by the pipeline. For a setup that already has data stored, you can use tools like Apache Spark to batch process and clean it before moving ahead with the pipeline.
  • Run PySpark Local Python Windows Notebook
    2 projects | dev.to | 21 Jan 2025
    PySpark is the Python API for Apache Spark, an open-source distributed computing system that enables fast, scalable data processing. PySpark allows Python developers to leverage the powerful capabilities of Spark for big data analytics, machine learning, and data engineering tasks without needing to delve into the complexities of Java or Scala.
  • Infraestrutura para análise de dados com Jupyter, Cassandra, Pyspark e Docker
    2 projects | dev.to | 15 Jan 2025
  • His Startup Is Now Worth $62B. It Gave Away Its First Product Free
    1 project | news.ycombinator.com | 17 Dec 2024

luigi

Posts with mentions or reviews of luigi. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-09-21.
  • Ask HN: What is the correct way to deal with pipelines?
    4 projects | news.ycombinator.com | 21 Sep 2023
    I agree there are many options in this space. Two others to consider:

    - https://airflow.apache.org/

    - https://github.com/spotify/luigi

    There are also many Kubernetes based options out there. For the specific use case you specified, you might even consider a plain old Makefile and incrond if you expect these all to run on a single host and be triggered by a new file showing up in a directory…

  • In the context of Python what is a Bob Job?
    2 projects | /r/learnpython | 10 Jul 2022
    Maybe if your use case is “smallish” and doesn’t require the whole studio suite you could check out apscheduler for doing python “tasks” on a schedule and luigi to build pipelines.
  • Lessons Learned from Running Apache Airflow at Scale
    12 projects | news.ycombinator.com | 23 May 2022
    What are you trying to do? Distributed scheduler with a single instance? No database? Are you sure you don't just mean "a scheduler" ala Luigi? https://github.com/spotify/luigi
  • Apache Airflow. How to make the complex workflow as an easy job
    1 project | dev.to | 20 Feb 2022
    It's good to know what Airflow is not the only one on the market. There are Dagster and Spotify Luigi and others. But they have different pros and cons, be sure that you did a good investigation on the market to choose the best suitable tool for your tasks.
  • DevOps Fundamentals for Deep Learning Engineers
    6 projects | /r/deeplearning | 20 Feb 2022
    MLOps is a HUGE area to explore, and not surprisingly, there are many startups showing up in this space. If you want to get it on the latest trends, then I would look at workflow orchestration frameworks such as Metaflow (started off at Netflix, is now spinning off into its own enterprise business, https://metaflow.org/), Kubeflow (used at Google, https://www.kubeflow.org/), Airflow (used at Airbnb, https://airflow.apache.org/), and Luigi (used at Spotify, https://github.com/spotify/luigi). Then you have the model serving itself, so there is Seldon (https://www.seldon.io/), Torchserve (https://pytorch.org/serve/), and TensorFlow Serving (https://www.tensorflow.org/tfx/guide/serving). You also have the actual export and transfer of DL models, and ONNX is the most popular here (https://onnx.ai/). Spark (https://spark.apache.org/) still holds up nicely after all these years, especially if you are doing batch predictions on massive amount of data. There is also the GitFlow way of doing things and Data Version Control (DVC, https://dvc.org/) is taken a pole position there.
  • Data pipelines with Luigi
    4 projects | dev.to | 22 Dec 2021
    At Wonderflow we're doing a lot of ML / NLP using Python and recently we are enjoying writing data pipelines using Spotify's Luigi.
  • Noobie who is trying to use K8s needs confirmation to know if this is the way or he is overestimating Kubernetes.
    3 projects | /r/kubernetes | 20 Oct 2021
  • Open Source ETL Project For Startups
    3 projects | dev.to | 22 Sep 2021
    💡【About Luigi】 https://github.com/spotify/luigi Luigi was built at Spotify since 2012, it's open source and mainly used for getting data insights by showing recommendations, toplists, A/B test analysis, external reports, internal dashboards, etc.
  • Resources/tutorials to help me learn about ETL?
    1 project | /r/dataengineering | 29 Jun 2021
  • Using Terraform to make my many side-projects 'pick up and play'
    3 projects | dev.to | 14 Jun 2021
    So to sum that up, I went from having nothing for my side-project set up in AWS to having a Kubernetes cluster with the basic metrics and dashboard, a proper IAM-linked ServiceAccount support for a smooth IAM experience in K8s, and Luigi deployed so that I could then run a Luigi workflow using an ad-hoc run of a CronJob. That's quite remarkable to me. All that took hours to figure out and define when I first did it, over six months ago.

What are some alternatives?

When comparing Apache Spark and luigi you can also consider the following projects:

Smile - Statistical Machine Intelligence & Learning Engine

Airflow - Apache Airflow - A platform to programmatically author, schedule, and monitor workflows

Trino - Official repository of Trino, the distributed SQL query engine for big data, former

Kedro - Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.

Scalding - A Scala API for Cascading

streamparse - Run Python in Apache Storm topologies. Pythonic API, CLI tooling, and a topology DSL.

InfluxDB – Built for High-Performance Time Series Workloads
InfluxDB 3 OSS is now GA. Transform, enrich, and act on time series data directly in the database. Automate critical tasks and eliminate the need to move data externally. Download now.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured

Did you know that Scala is
the 34th most popular programming language
based on number of references?