Our great sponsors
- InfluxDB - Collect and Analyze Billions of Data Points in Real Time
- Onboard AI - Learn any GitHub repo in 59 seconds
- SaaSHub - Software Alternatives and Reviews
-
luigi
Luigi is a Python module that helps you build complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization etc. It also comes with Hadoop support built in.
MLOps is a HUGE area to explore, and not surprisingly, there are many startups showing up in this space. If you want to get it on the latest trends, then I would look at workflow orchestration frameworks such as Metaflow (started off at Netflix, is now spinning off into its own enterprise business, https://metaflow.org/), Kubeflow (used at Google, https://www.kubeflow.org/), Airflow (used at Airbnb, https://airflow.apache.org/), and Luigi (used at Spotify, https://github.com/spotify/luigi). Then you have the model serving itself, so there is Seldon (https://www.seldon.io/), Torchserve (https://pytorch.org/serve/), and TensorFlow Serving (https://www.tensorflow.org/tfx/guide/serving). You also have the actual export and transfer of DL models, and ONNX is the most popular here (https://onnx.ai/). Spark (https://spark.apache.org/) still holds up nicely after all these years, especially if you are doing batch predictions on massive amount of data. There is also the GitFlow way of doing things and Data Version Control (DVC, https://dvc.org/) is taken a pole position there.
-
MLOps is a HUGE area to explore, and not surprisingly, there are many startups showing up in this space. If you want to get it on the latest trends, then I would look at workflow orchestration frameworks such as Metaflow (started off at Netflix, is now spinning off into its own enterprise business, https://metaflow.org/), Kubeflow (used at Google, https://www.kubeflow.org/), Airflow (used at Airbnb, https://airflow.apache.org/), and Luigi (used at Spotify, https://github.com/spotify/luigi). Then you have the model serving itself, so there is Seldon (https://www.seldon.io/), Torchserve (https://pytorch.org/serve/), and TensorFlow Serving (https://www.tensorflow.org/tfx/guide/serving). You also have the actual export and transfer of DL models, and ONNX is the most popular here (https://onnx.ai/). Spark (https://spark.apache.org/) still holds up nicely after all these years, especially if you are doing batch predictions on massive amount of data. There is also the GitFlow way of doing things and Data Version Control (DVC, https://dvc.org/) is taken a pole position there.
-
InfluxDB
Collect and Analyze Billions of Data Points in Real Time. Manage all types of time series data in a single, purpose-built database. Run at any scale in any environment in the cloud, on-premises, or at the edge.
-
MLOps is a HUGE area to explore, and not surprisingly, there are many startups showing up in this space. If you want to get it on the latest trends, then I would look at workflow orchestration frameworks such as Metaflow (started off at Netflix, is now spinning off into its own enterprise business, https://metaflow.org/), Kubeflow (used at Google, https://www.kubeflow.org/), Airflow (used at Airbnb, https://airflow.apache.org/), and Luigi (used at Spotify, https://github.com/spotify/luigi). Then you have the model serving itself, so there is Seldon (https://www.seldon.io/), Torchserve (https://pytorch.org/serve/), and TensorFlow Serving (https://www.tensorflow.org/tfx/guide/serving). You also have the actual export and transfer of DL models, and ONNX is the most popular here (https://onnx.ai/). Spark (https://spark.apache.org/) still holds up nicely after all these years, especially if you are doing batch predictions on massive amount of data. There is also the GitFlow way of doing things and Data Version Control (DVC, https://dvc.org/) is taken a pole position there.
-
MLOps is a HUGE area to explore, and not surprisingly, there are many startups showing up in this space. If you want to get it on the latest trends, then I would look at workflow orchestration frameworks such as Metaflow (started off at Netflix, is now spinning off into its own enterprise business, https://metaflow.org/), Kubeflow (used at Google, https://www.kubeflow.org/), Airflow (used at Airbnb, https://airflow.apache.org/), and Luigi (used at Spotify, https://github.com/spotify/luigi). Then you have the model serving itself, so there is Seldon (https://www.seldon.io/), Torchserve (https://pytorch.org/serve/), and TensorFlow Serving (https://www.tensorflow.org/tfx/guide/serving). You also have the actual export and transfer of DL models, and ONNX is the most popular here (https://onnx.ai/). Spark (https://spark.apache.org/) still holds up nicely after all these years, especially if you are doing batch predictions on massive amount of data. There is also the GitFlow way of doing things and Data Version Control (DVC, https://dvc.org/) is taken a pole position there.
-
MLOps is a HUGE area to explore, and not surprisingly, there are many startups showing up in this space. If you want to get it on the latest trends, then I would look at workflow orchestration frameworks such as Metaflow (started off at Netflix, is now spinning off into its own enterprise business, https://metaflow.org/), Kubeflow (used at Google, https://www.kubeflow.org/), Airflow (used at Airbnb, https://airflow.apache.org/), and Luigi (used at Spotify, https://github.com/spotify/luigi). Then you have the model serving itself, so there is Seldon (https://www.seldon.io/), Torchserve (https://pytorch.org/serve/), and TensorFlow Serving (https://www.tensorflow.org/tfx/guide/serving). You also have the actual export and transfer of DL models, and ONNX is the most popular here (https://onnx.ai/). Spark (https://spark.apache.org/) still holds up nicely after all these years, especially if you are doing batch predictions on massive amount of data. There is also the GitFlow way of doing things and Data Version Control (DVC, https://dvc.org/) is taken a pole position there.
-
MLOps is a HUGE area to explore, and not surprisingly, there are many startups showing up in this space. If you want to get it on the latest trends, then I would look at workflow orchestration frameworks such as Metaflow (started off at Netflix, is now spinning off into its own enterprise business, https://metaflow.org/), Kubeflow (used at Google, https://www.kubeflow.org/), Airflow (used at Airbnb, https://airflow.apache.org/), and Luigi (used at Spotify, https://github.com/spotify/luigi). Then you have the model serving itself, so there is Seldon (https://www.seldon.io/), Torchserve (https://pytorch.org/serve/), and TensorFlow Serving (https://www.tensorflow.org/tfx/guide/serving). You also have the actual export and transfer of DL models, and ONNX is the most popular here (https://onnx.ai/). Spark (https://spark.apache.org/) still holds up nicely after all these years, especially if you are doing batch predictions on massive amount of data. There is also the GitFlow way of doing things and Data Version Control (DVC, https://dvc.org/) is taken a pole position there.
Related posts
- PSA: You don't need fancy stuff to do good work.
- Airflow's Problem
- Taking on the ML pipeline challenge: why data scientists need to own their ML workflows in production
- [D] Major bug in Scikit-Learn's implementation of F-1 score
- Show HN: Taipy – Turns Data and AI algorithms into full web applications