Scrapy
seaborn
Scrapy | seaborn | |
---|---|---|
189 | 83 | |
57,425 | 13,249 | |
3.5% | 0.6% | |
9.6 | 5.7 | |
7 days ago | 5 months ago | |
Python | Python | |
BSD 3-clause "New" or "Revised" License | BSD 3-clause "New" or "Revised" License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
Scrapy
- Scrapy needs to have sane defaults that do no harm
-
Top 10 Tools for Efficient Web Scraping in 2025
Scrapy is a robust and scalable open-source web crawling framework. It is highly efficient for large-scale projects and supports asynchronous scraping.
-
11 best open-source web crawlers and scrapers in 2024
Language: Python | GitHub: 52.9k stars | link
-
Current problems and mistakes of web scraping in Python and tricks to solve them!
One might ask, what about Scrapy? I'll be honest: I don't really keep up with their updates. But I haven't heard about Zyte doing anything to bypass TLS fingerprinting. So out of the box Scrapy will also be blocked, but nothing is stopping you from using curl_cffi in your Scrapy Spider.
- Scrapy, a fast high-level web crawling and scraping framework for Python
-
Automate Spider Creation in Scrapy with Jinja2 and JSON
Install scrapy (Offical website) either using pip or conda (Follow for detailed instructions):
-
Analyzing Svenskalag Data using DBT and DuckDB
Using Scrapy I fetched the data needed (activities and attendance). Scrapy handled authentication using a form request in a very simple way:
-
Scrapy Vs. Crawlee
Scrapy is an open-source Python-based web scraping framework that extracts data from websites. With Scrapy, you create spiders, which are autonomous scripts to download and process web content. The limitation of Scrapy is that it does not work very well with JavaScript rendered websites, as it was designed for static HTML pages. We will do a comparison later in the article about this.
- Claude is now available in Europe
- Scrapy: A Fast and Powerful Scraping and Web Crawling Framework
seaborn
-
How I Hacked Uber’s Hidden API to Download 4379 Rides
Below are the key insights. If you want to see the Python code I used to do this analysis and generate the charts using Seaborn, you can find my full analysis Jupyter notebook on my Github repo here: Tip Analysis.ipynb
-
1MinDocker #6 - Building further
seaborn
-
Scientific Visualization: Python and Matplotlib, by Nicolas Rougier
Additionally, Seaborn (https://seaborn.pydata.org/) is a great mention for people that want to use Matplotlib with better default aesthetics, amongst other conveniences:
"Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics."
-
Data Visualisation Basics
Seaborn: built on top of matplotlib, adds a number of functions to make common statistical visualizations easier to generate.
-
Useful Python Libraries for AI/ML
pandas - The standard data analysis and manipulation tool numpy - scientific computing library seaborn - statistical data visualization sklearn - basic machine learning and predictive analysis CausalML - a suite of uplift modeling and causal inference methods PyTorch - professional deep learning framework PivotTablejs - Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook LazyPredict - build and work with and compare multiple models phidata - Build AI Assistants with memory, knowledge and tools. Lux - automates visualization and data analysis pycaret - low-code machine learning library. really nice Cleanlab - for when you are working with messy data drawdata - draw a dataset from inside Jupyter pyforest - lazy import popular data science libs streamlit - simple ui builder, useful for demonstrating ML results
-
Essential Deep Learning Checklist: Best Practices Unveiled
How to Accomplish: Utilize visualization libraries like Matplotlib, Seaborn, or Plotly in Python to create histograms, scatter plots, and bar charts. For image data, use tools that visualize images alongside their labels to check for labeling accuracy. For structured data, correlation matrices and pair plots can be highly informative.
- "No" is not an actionable error message
-
Apache Superset
If you are doing data analysis I don't think any of the 3 pieces of software you mentioned are going to be that helpful.
I see these products as tools for data visualization and reporting i.e. presenting prepared datasets to users in a visually appealing way. They aren't as well suited for serious analytics.
I can't comment on Superset or Tableau but I am familiar with Power BI (it has been rolled out across my org), the type of statistics you can do with it are fairly rudimentary. If you need to do any thing beyond summarizing (counts, averages, min, max etc). It is not particularly easy.
For data analysis I use SAS or R. This software allows you do things like multivariate regression, timeseries forecasting, PCA, Cluster analysis etc. There is also plotting capability.
Both these products are kind of old school, I've been using them since early 2000's, the "new school" seems to be Python. Pretty much all the recent data science people in my organization use Python. Particularly Pandas and libraries like Seaborn (https://seaborn.pydata.org/).
The "power" users of Power BI in my organization tend to be finance/HR people for use cases like drill down into cost figures or Interactively presenting KPI's and other headline figures to management things like that.
-
Seaborn bug responsible for finding of declining disruptiveness in science
It's referring to the seaborn library (https://seaborn.pydata.org/), a Python library for data visualization (built on top of matplotlib).
-
Why Pandas feels clunky when coming from R
While it’s not perfect and it’s not ggplot2, Seaborn is definitely a big improvement over bare matplotlib. You can still use matplotlib to modify the plots it spits out if you want to but the defaults are pretty good most of the time.
https://seaborn.pydata.org/
What are some alternatives?
requests-html - Pythonic HTML Parsing for Humans™
bokeh - Interactive Data Visualization in the browser, from Python
MechanicalSoup - A Python library for automating interaction with websites.
plotly - The interactive graphing library for Python :sparkles:
pyspider - A Powerful Spider(Web Crawler) System in Python.
ggplot - ggplot port for python