seaborn
plotly
seaborn | plotly | |
---|---|---|
83 | 68 | |
13,133 | 17,137 | |
1.1% | 1.1% | |
5.7 | 9.9 | |
4 months ago | 7 days ago | |
Python | Python | |
BSD 3-clause "New" or "Revised" License | MIT License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
seaborn
-
How I Hacked Uber’s Hidden API to Download 4379 Rides
Below are the key insights. If you want to see the Python code I used to do this analysis and generate the charts using Seaborn, you can find my full analysis Jupyter notebook on my Github repo here: Tip Analysis.ipynb
-
1MinDocker #6 - Building further
seaborn
-
Scientific Visualization: Python and Matplotlib, by Nicolas Rougier
Additionally, Seaborn (https://seaborn.pydata.org/) is a great mention for people that want to use Matplotlib with better default aesthetics, amongst other conveniences:
"Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics."
-
Data Visualisation Basics
Seaborn: built on top of matplotlib, adds a number of functions to make common statistical visualizations easier to generate.
-
Useful Python Libraries for AI/ML
pandas - The standard data analysis and manipulation tool numpy - scientific computing library seaborn - statistical data visualization sklearn - basic machine learning and predictive analysis CausalML - a suite of uplift modeling and causal inference methods PyTorch - professional deep learning framework PivotTablejs - Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook LazyPredict - build and work with and compare multiple models phidata - Build AI Assistants with memory, knowledge and tools. Lux - automates visualization and data analysis pycaret - low-code machine learning library. really nice Cleanlab - for when you are working with messy data drawdata - draw a dataset from inside Jupyter pyforest - lazy import popular data science libs streamlit - simple ui builder, useful for demonstrating ML results
-
Essential Deep Learning Checklist: Best Practices Unveiled
How to Accomplish: Utilize visualization libraries like Matplotlib, Seaborn, or Plotly in Python to create histograms, scatter plots, and bar charts. For image data, use tools that visualize images alongside their labels to check for labeling accuracy. For structured data, correlation matrices and pair plots can be highly informative.
- "No" is not an actionable error message
-
Apache Superset
If you are doing data analysis I don't think any of the 3 pieces of software you mentioned are going to be that helpful.
I see these products as tools for data visualization and reporting i.e. presenting prepared datasets to users in a visually appealing way. They aren't as well suited for serious analytics.
I can't comment on Superset or Tableau but I am familiar with Power BI (it has been rolled out across my org), the type of statistics you can do with it are fairly rudimentary. If you need to do any thing beyond summarizing (counts, averages, min, max etc). It is not particularly easy.
For data analysis I use SAS or R. This software allows you do things like multivariate regression, timeseries forecasting, PCA, Cluster analysis etc. There is also plotting capability.
Both these products are kind of old school, I've been using them since early 2000's, the "new school" seems to be Python. Pretty much all the recent data science people in my organization use Python. Particularly Pandas and libraries like Seaborn (https://seaborn.pydata.org/).
The "power" users of Power BI in my organization tend to be finance/HR people for use cases like drill down into cost figures or Interactively presenting KPI's and other headline figures to management things like that.
-
Seaborn bug responsible for finding of declining disruptiveness in science
It's referring to the seaborn library (https://seaborn.pydata.org/), a Python library for data visualization (built on top of matplotlib).
-
Why Pandas feels clunky when coming from R
While it’s not perfect and it’s not ggplot2, Seaborn is definitely a big improvement over bare matplotlib. You can still use matplotlib to modify the plots it spits out if you want to but the defaults are pretty good most of the time.
https://seaborn.pydata.org/
plotly
-
Making API requests from your spreadsheets
# import plotly import plotly.express as px # create your chart type, for more chart types: https://plotly.com/python/ fig = px.bar(df, x = letter, y = frequency) # make chart prettier fig.update_layout( plot_bgcolor="White", height=700 ) # display chart fig.show()
-
Who’s Really Following You on Dev.to? A Guide to Analyzing Your Audience
Right off the bat, there’s a massive spike around early 2024–03 that stands out — yet, it’s hard to pinpoint which specific article triggered this rush just by looking at this static chart. To dig deeper and see if a particular article caused this jump, I decided to try something more interactive with Plotly for a clearer view.
-
1MinDocker #6 - Building further
plotly
- Yes, Python and Matplotlib can make pretty charts
-
Top 10 growing data visualization libraries in Python in 2023
Github: https://github.com/plotly/plotly.py
-
How to Create a Pareto Chart 📐
First we need to install the Plotly. To create some very dynamic graphics, this tool helps a lot.
-
For all you computational people: What’s your favorite plotting software?
my good dude wake up and smell the plotly. Knowing the ins and outs of matplotlib is helpful but doing interactive stuff with jupyter I always use plotly.
- What does Power BI offer?
-
Other programing options?
Plotly documentation (https://plotly.com/python/)
-
Advice on upgrading my Presentation template
I don´t know your workflow, but I use 2 markdown based presentations: obsidian advance slides and Quarto presentations. The former is a plugin for Obsidian, which is the software I use to take all my notes, write my thesis, etc., so It makes it extremely easy to make presentations since all my information is in Obsidian. In the other hand, Quarto is a publishing system (articles, presentations, websites books) that can be easily integrated with python and R. This makes it supper convenient for showing my data to my PI since I can analyze my data and at the same time make a presentation for the data. Besides this, Quarto also integrates with my Zotero library, so I can insert citations. Lastly, one thing that made my Quarto presentations infinitely better that the powerpoints, Is that I can insert interactive graphs with plotly, so when I'm showing my data, my PI is able to explore the data inside the presentation.
What are some alternatives?
bokeh - Interactive Data Visualization in the browser, from Python
PyQtGraph - Fast data visualization and GUI tools for scientific / engineering applications
ggplot - ggplot port for python
Apache Superset - Apache Superset is a Data Visualization and Data Exploration Platform [Moved to: https://github.com/apache/superset]
Altair - Declarative visualization library for Python