MLflow
guildai
MLflow | guildai | |
---|---|---|
61 | 16 | |
18,334 | 864 | |
1.7% | 0.3% | |
9.9 | 8.8 | |
4 days ago | about 1 year ago | |
Python | Python | |
Apache License 2.0 | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
MLflow
-
Essential Deep Learning Checklist: Best Practices Unveiled
Tools: Implement logging using tools like MLFlow or Weights & Biases (W&B), which provide a structured way to track experiments, compare them visually, and share findings with your team. These tools integrate seamlessly with most machine learning frameworks, making it easier to adopt them in your existing workflows.
-
Accelerating into AI: Lessons from AWS
CometML and mlMLFlow are popular development and experimentation tools, although some express concerns about their proprietary and weak data storage with its lack of tamper-proof guarantees.
-
10 Open Source Tools for Building MLOps Pipelines
MLflow is an open source MLOps tool that allows users to manage the entire life cycle of machine learning models. It has four key components:
-
A step-by-step guide to building an MLOps pipeline
Experiment tracking tools like MLflow, Weights and Biases, and Neptune.ai provide a pipeline that automatically tracks meta-data and artifacts generated from each experiment you run. Although they have varying features and functionalities, experiment tracking tools provide a systematic structure that handles the iterative model development approach.
- Mlflow: Open-source platform for the machine learning lifecycle
-
Observations on MLOps–A Fragmented Mosaic of Mismatched Expectations
How can this be? The current state of practice in AI/ML work requires adaptivity, which is uncommon in classical computational fields. There are myriad tools that capture the work across the many instances of the AI/ML lifecycle. The idea that any one tool could sufficiently capture the dynamic work is unrealistic. Take, for example, an experiment tracking tool like W&B or MLFlow; some form of experiment tracking is necessary in typical model training lifecycles. Such a tool requires some notion of a dataset. However, a tool focusing on experiment tracking is orthogonal to the needs of analyzing model performance at the data sample level, which is critical to understanding the failure modes of models. The way one does this depends on the type of data and the AI/ML task at hand. In other words, MLOps is inherently an intricate mosaic, as the capabilities and best practices of AI/ML work evolve.
-
My Favorite DevTools to Build AI/ML Applications!
MLflow is an open-source platform for managing the end-to-end machine learning lifecycle. It includes features for experiment tracking, model versioning, and deployment, enabling developers to track and compare experiments, package models into reproducible runs, and manage model deployment across multiple environments.
-
Exploring Open-Source Alternatives to Landing AI for Robust MLOps
Platforms such as MLflow monitor the development stages of machine learning models. In parallel, Data Version Control (DVC) brings version control system-like functions to the realm of data sets and models.
-
cascade alternatives - clearml and MLflow
3 projects | 1 Nov 2023
-
EL5: Difference between OpenLLM, LangChain, MLFlow
MLFlow - http://mlflow.org
guildai
-
guildai VS cascade - a user suggested alternative
2 projects | 5 Dec 2023
-
[D] Who here are convinced that they have a really good setup that keeps track of their ML experiments?
Experiment tracking in DvC is implemented using git to store snapshots of a project and related artifacts. You might take a look at Guild AI's support for DvC, which is tightly integrated with DvC stages. You can run any of the stages defined for a project and you get a properly isolated run (each run is a project copy to ensure that you're not corrupting the run if you modify files while it's running - as well as properly supporting concurrent runs). Once you have runs in Guild, you can use any number of tools to study, compare, export, etc.
-
[D] Deploying SOTA models into my own projects
I built an experiment tracking tool (Guild AI) that focuses on code/model reuse and so this question is dear to my heart :) Best of luck!
-
[P] I reviewed 50+ open-source MLOps tools. Here’s the result
I'm not aware of experiment tracking in Jupyter notebooks themselves. Guild AI is able to run notebooks as experiments however.
-
[D] What MLOps platform do you use, and how helpful are they?
Disclosure - I'm the author of Guild AI so take this for the biased opinion that it is.
-
[N] Experiment tracking with DvC and Guild AI
I'm the author of Guild AI (open source experiment tracking). For some time now Guild users have asked for DvC support. This is now available as a pre-release.
-
[D] Why doesn’t your team use an experiment tracking tool?
Guild AI now has support for running DvC stages as experiments. DvC uses git under the covers to manage project state for each experiment, along with the experiment results. Guild doesn't touch your git repo and instead copies your project source to a new run directory. This ensures that you have a correct record of your experiment without churning your project state.
-
Data Science toolset summary from 2021
Guild.ai - https://guild.ai/
- [D] How do you ensure reproducibility?
-
[D] I'm new and scrappy. What tips do you have for better logging and documentation when training or hyperparameter training?
Use guild and pytorch-lightning. Make it easy for new contributors to get your data by using dvc as a data access tool.
What are some alternatives?
clearml - ClearML - Auto-Magical CI/CD to streamline your AI workload. Experiment Management, Data Management, Pipeline, Orchestration, Scheduling & Serving in one MLOps/LLMOps solution
aim - Aim 💫 — An easy-to-use & supercharged open-source experiment tracker.
Sacred - Sacred is a tool to help you configure, organize, log and reproduce experiments developed at IDSIA.
dvc - 🦉 ML Experiments and Data Management with Git
zenml - ZenML 🙏: The bridge between ML and Ops. https://zenml.io.
pytorch-lightning - Build high-performance AI models with PyTorch Lightning (organized PyTorch). Deploy models with Lightning Apps (organized Python to build end-to-end ML systems). [Moved to: https://github.com/Lightning-AI/lightning]
labml - 🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱
Prophet - Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
wandb - The AI developer platform. Use Weights & Biases to train and fine-tune models, and manage models from experimentation to production.
H2O - H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.