MLflow
clearml
MLflow | clearml | |
---|---|---|
61 | 20 | |
18,288 | 5,564 | |
1.5% | 1.6% | |
9.9 | 7.3 | |
8 days ago | 3 days ago | |
Python | Python | |
Apache License 2.0 | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
MLflow
-
Essential Deep Learning Checklist: Best Practices Unveiled
Tools: Implement logging using tools like MLFlow or Weights & Biases (W&B), which provide a structured way to track experiments, compare them visually, and share findings with your team. These tools integrate seamlessly with most machine learning frameworks, making it easier to adopt them in your existing workflows.
-
Accelerating into AI: Lessons from AWS
CometML and mlMLFlow are popular development and experimentation tools, although some express concerns about their proprietary and weak data storage with its lack of tamper-proof guarantees.
-
10 Open Source Tools for Building MLOps Pipelines
MLflow is an open source MLOps tool that allows users to manage the entire life cycle of machine learning models. It has four key components:
-
A step-by-step guide to building an MLOps pipeline
Experiment tracking tools like MLflow, Weights and Biases, and Neptune.ai provide a pipeline that automatically tracks meta-data and artifacts generated from each experiment you run. Although they have varying features and functionalities, experiment tracking tools provide a systematic structure that handles the iterative model development approach.
- Mlflow: Open-source platform for the machine learning lifecycle
-
Observations on MLOps–A Fragmented Mosaic of Mismatched Expectations
How can this be? The current state of practice in AI/ML work requires adaptivity, which is uncommon in classical computational fields. There are myriad tools that capture the work across the many instances of the AI/ML lifecycle. The idea that any one tool could sufficiently capture the dynamic work is unrealistic. Take, for example, an experiment tracking tool like W&B or MLFlow; some form of experiment tracking is necessary in typical model training lifecycles. Such a tool requires some notion of a dataset. However, a tool focusing on experiment tracking is orthogonal to the needs of analyzing model performance at the data sample level, which is critical to understanding the failure modes of models. The way one does this depends on the type of data and the AI/ML task at hand. In other words, MLOps is inherently an intricate mosaic, as the capabilities and best practices of AI/ML work evolve.
-
My Favorite DevTools to Build AI/ML Applications!
MLflow is an open-source platform for managing the end-to-end machine learning lifecycle. It includes features for experiment tracking, model versioning, and deployment, enabling developers to track and compare experiments, package models into reproducible runs, and manage model deployment across multiple environments.
-
Exploring Open-Source Alternatives to Landing AI for Robust MLOps
Platforms such as MLflow monitor the development stages of machine learning models. In parallel, Data Version Control (DVC) brings version control system-like functions to the realm of data sets and models.
-
cascade alternatives - clearml and MLflow
3 projects | 1 Nov 2023
-
EL5: Difference between OpenLLM, LangChain, MLFlow
MLFlow - http://mlflow.org
clearml
- FLaNK Stack Weekly 12 February 2024
-
clearml VS cascade - a user suggested alternative
2 projects | 5 Dec 2023
-
cascade alternatives - clearml and MLflow
3 projects | 1 Nov 2023
- Is there any workflow orchestrator that is Hydra friendly ?
-
Show HN: Open-source infra for data scientists
It looks like Magniv is targeting Python in general. This is similar to ClearML. What are the differentiating points to Magniv compared to similar products?
It seems like the product also integrates with SCM systems. Are you using gitea and then containers to push code and data to execution like CodeOcean?
https://github.com/allegroai/clearml
https://codeocean.com/
-
[D] Drop your best open source Deep learning related Project
Hi there. ClearML is our open-source solution which is part of the PyTorch ecosystem. We would really appreciate it if you read our README and starred us if you like what you see!
- Start with powerful experiment management and scale into full MLOps with only 2 lines of code.
- Everything you need to log, share, and version experiments, orchestrate pipelines, and scale within one open-source MLOps solution.
- Start with powerful experiment management and scale into full MLOps with only 2 lines of code
What are some alternatives?
Sacred - Sacred is a tool to help you configure, organize, log and reproduce experiments developed at IDSIA.
BentoML - The easiest way to serve AI apps and models - Build reliable Inference APIs, LLM apps, Multi-model chains, RAG service, and much more!
zenml - ZenML 🙏: The bridge between ML and Ops. https://zenml.io.
metaflow - :rocket: Build and manage real-life ML, AI, and data science projects with ease!
guildai - Experiment tracking, ML developer tools
kedro-great - The easiest way to integrate Kedro and Great Expectations
dvc - 🦉 ML Experiments and Data Management with Git
streamlit - Streamlit — A faster way to build and share data apps.
Prophet - Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
ploomber - The fastest ⚡️ way to build data pipelines. Develop iteratively, deploy anywhere. ☁️
H2O - H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.
feast - The Open Source Feature Store for Machine Learning