firecracker
cloud-hypervisor
firecracker | cloud-hypervisor | |
---|---|---|
76 | 18 | |
25,395 | 3,955 | |
1.7% | 2.6% | |
9.9 | 9.8 | |
2 days ago | 3 days ago | |
Rust | Rust | |
Apache License 2.0 | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
firecracker
-
I'm Funding Ladybird Because I Can't Fund Firefox
What he said is true, AWS uses Rust heavily in some of AWS core systems https://aws.amazon.com/blogs/devops/why-aws-is-the-best-plac....
Some of the open source projects you can find are AWS Firecracker https://github.com/firecracker-microvm/firecracker and Cloudflare Pingora https://github.com/cloudflare/pingora
-
Lambda Internals: Why AWS Lambda Will Not Help With Machine Learning
This architecture leverages microVMs for rapid scaling and high-density workloads. But does it work for GPU? The answer is no. You can look at the old 2019 GitHub issue and the comments to it to get the bigger picture of why it is so.
-
Show HN: Add AI code interpreter to any LLM via SDK
Hi, I'm the CEO of the company that built this SDK.
We're a company called E2B [0]. We're building and open-source [1] secure environments for running untrusted AI-generated code and AI agents. We call these environments sandboxes and they are built on top of micro VM called Firecracker [2].
You can think of us as giving small cloud computers to LLMs.
We recently created a dedicated SDK for building custom code interpreters in Python or JS/TS. We saw this need after a lot of our users have been adding code execution capabilities to their AI apps with our core SDK [3]. These use cases were often centered around AI data analysis so code interpreter-like behavior made sense
The way our code interpret SDK works is by spawning an E2B sandbox with Jupyter Server. We then communicate with this Jupyter server through Jupyter Kernel messaging protocol [4].
We don't do any wrapping around LLM, any prompting, or any agent-like framework. We leave all of that on users. We're really just a boring code execution layer that sats at the bottom that we're building specifically for the future software that will be building another software. We work with any LLM. Here's how we added code interpreter to Claude [5].
Our long-term plan is to build an automated AWS for AI apps and agents.
Happy to answer any questions and hear feedback!
[0] https://e2b.dev/
[1] https://github.com/e2b-dev
[2] https://github.com/firecracker-microvm/firecracker
[3] https://e2b.dev/docs
[4] https://jupyter-client.readthedocs.io/en/latest/messaging.ht...
[5] https://github.com/e2b-dev/e2b-cookbook/blob/main/examples/c...
-
Fly.it Has GPUs Now
As far as I know, Fly uses Firecracker for their VMs. I've been following Firecracker for a while now (even using it in a project), and they don't support GPUs out of the box (and have no plan to support it [1]).
I'm curious to know how Fly figured their own GPU support with Firecracker. In the past they had some very detailed technical posts on how they achieved certain things, so I'm hoping we'll see one on their GPU support in the future!
[1]: https://github.com/firecracker-microvm/firecracker/issues/11...
-
MotorOS: a Rust-first operating system for x64 VMs
I pass through a GPU and USB hub to a VM running on a machine in the garage. An optical video cable and network compatible USB extender brings the interface to a different room making it my primary “desktop” computer (and an outdated laptop as a backup device). Doesn’t get more silent and cool than this. Another VM on the garage machine gets a bunch of hard drives passed through to it.
That said, hardware passthrough/VFIO is likely out of the current realistic scope for this project. VM boot times can be optimized if you never look for hardware to initialize in the first place. Though they are still likely initializing a network interface of some sort.
“MicroVM” seems to be a term used when as much as possible is stripped from a VM, such as with https://github.com/firecracker-microvm/firecracker
-
Virtual Machine as a Core Android Primitive
According to their own FAQ it is indeed: https://github.com/firecracker-microvm/firecracker/blob/main...
-
Sandboxing a .NET Script
What about microVMs like firecracker?
-
We Replaced Firecracker with QEMU
Dynamic memory management - Firecracker's RAM footprint starts low, but once a workload inside allocates RAM, Firecracker will never return it to the host system. After running several workloads inside, you end up with an idling VM that consumes 32 GB of RAM on the host, even though it doesn't need any of it.
Firecracker has a balloon device you can inflate (ie: acquire as much memory inside the VM as possible) and then deflate... returning the memory to the host.
https://github.com/firecracker-microvm/firecracker/blob/main...
- I'm looking for a virtual machine that prioritizes privacy and does not include tracking or telemetry.
-
Neverflow: Set of C macros that guard against buffer overflows
Very few things in those companies are being written in Rust, and half of those projects chose Rust around ideological reasons rather than technical, with plenty of 'unsafe' thrown in for performance reasons
https://github.com/firecracker-microvm/firecracker/search?q=...
The fact that 'unsafe' even exists in Rust means it's no better than C with some macros.
Don't get me wrong, Rust has it's place, like all the other languages that came about for various reasons, but it's not going to gain wide adoption.
Future of programming consists of 2 languages - something like C that has a small instruction set for adopting to new hardware, and something that is very high level, higher than Python with LLM in the background. Everything in the middle is fodder.
cloud-hypervisor
-
Our container platform is in production. It has GPUs. Here's an early look
If the calls first pass through a memory safe language as what gvisor does, isn’t the attack surface greatly reduced?
It does seem however that Firecracker + GPU support (or https://github.com/cloud-hypervisor/cloud-hypervisor) is most promising though.
-
We Replaced Firecracker with QEMU
There is no mention of cloud-hypervisor[1] (also in the rust-vmm ecosystem) in the article. It has the memory reclamation feature they require. It also support VFIO and virtiofs.
[1] <https://github.com/cloud-hypervisor/cloud-hypervisor>
-
Hypervisor Development in Rust
https://github.com/tandasat/Hypervisor-101-in-Rust is there to help
https://github.com/cloud-hypervisor/cloud-hypervisor isn't educational necessarily but is one of the most technically progressive fastest developing highest funded vm projects ever, and there are oodles of tech talks on it. I am not qualified to make any specific recommendations, but there's tons of stuff here.
- A Virtual Machine Monitor for Modern Cloud Workloads
-
Firecracker internals: deep dive inside the technology powering AWS Lambda(2021)
> The goal of the Cloud Hypervisor project differs from the aforementioned projects in that it aims to be a general purpose VMM for Cloud Workloads and not limited to container/serverless or client workloads.
Firecracker is such a great piece of technology. I'm amazed that AWS actually open-sourced it. All kudos to them. We're using Firecracker at our company to allow API companies build interactive demos like this one we built for Prisma [1].
[0] https://github.com/cloud-hypervisor/cloud-hypervisor
[1] https://playground.prisma.io
-
Cloud Hypervisor vs Hypervisors
Relatively new project 'Cloud Hypervisor' https://github.com/cloud-hypervisor/cloud-hypervisor seems to launch images faster.
-
I'm releasing cargo-sandbox
The Chrome OS hypervisor was then evolved/forked into Firecracker and Intel's Cloud Hypervisor, with the latter supporting both Linux and Windows. Perhaps Cloud Hypervisor would serve as a good backbone for sandboxing, with its Rust implementation and focus on security?
-
Virtink : un module complémentaire de virtualisation légère pour Kubernetes …
GitHub - cloud-hypervisor/cloud-hypervisor: A Virtual Machine Monitor for modern Cloud workloads. Features include CPU, memory and device hotplug, support for running Windows and Linux guests, device offload with vhost-user and a minimal compact footprint. Written in Rust with a strong focus on security.
- Cloud Hypervisor Is an Open Source Virtual Machine Monitor (VMM)
-
We clone a running VM in 2 seconds
Did you guys think about live migrations? https://github.com/cloud-hypervisor/cloud-hypervisor seems to support it and it shares a good amount of code with firecracker.
What are some alternatives?
bottlerocket - An operating system designed for hosting containers
kubevirt - Kubernetes Virtualization API and runtime in order to define and manage virtual machines.
gvisor - Application Kernel for Containers
kata-containers - Kata Containers is an open source project and community working to build a standard implementation of lightweight Virtual Machines (VMs) that feel and perform like containers, but provide the workload isolation and security advantages of VMs. https://katacontainers.io/
libkrun - A dynamic library providing Virtualization-based process isolation capabilities
virt-manager - Desktop tool for managing virtual machines via libvirt
krunvm - Create microVMs from OCI images
rusty-hermit - Hermit for Rust. [Moved to: https://github.com/hermit-os/hermit-rs]
rust-raspberrypi-OS-tutorials - :books: Learn to write an embedded OS in Rust :crab:
QEMU - Official QEMU mirror. Please see https://www.qemu.org/contribute/ for how to submit changes to QEMU. Pull Requests are ignored. Please only use release tarballs from the QEMU website.
tfjs - A WebGL accelerated JavaScript library for training and deploying ML models.
crosvm - The Chrome OS Virtual Machine Monitor - Mirror of https://chromium.googlesource.com/crosvm/crosvm/