-
Hi, I'm the CEO of the company that built this SDK.
We're a company called E2B [0]. We're building and open-source [1] secure environments for running untrusted AI-generated code and AI agents. We call these environments sandboxes and they are built on top of micro VM called Firecracker [2].
You can think of us as giving small cloud computers to LLMs.
We recently created a dedicated SDK for building custom code interpreters in Python or JS/TS. We saw this need after a lot of our users have been adding code execution capabilities to their AI apps with our core SDK [3]. These use cases were often centered around AI data analysis so code interpreter-like behavior made sense
The way our code interpret SDK works is by spawning an E2B sandbox with Jupyter Server. We then communicate with this Jupyter server through Jupyter Kernel messaging protocol [4].
We don't do any wrapping around LLM, any prompting, or any agent-like framework. We leave all of that on users. We're really just a boring code execution layer that sats at the bottom that we're building specifically for the future software that will be building another software. We work with any LLM. Here's how we added code interpreter to Claude [5].
Our long-term plan is to build an automated AWS for AI apps and agents.
Happy to answer any questions and hear feedback!
[0] https://e2b.dev/
[1] https://github.com/e2b-dev
[2] https://github.com/firecracker-microvm/firecracker
[3] https://e2b.dev/docs
[4] https://jupyter-client.readthedocs.io/en/latest/messaging.ht...
[5] https://github.com/e2b-dev/e2b-cookbook/blob/main/examples/c...
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
-
Hi, I'm the CEO of the company that built this SDK.
We're a company called E2B [0]. We're building and open-source [1] secure environments for running untrusted AI-generated code and AI agents. We call these environments sandboxes and they are built on top of micro VM called Firecracker [2].
You can think of us as giving small cloud computers to LLMs.
We recently created a dedicated SDK for building custom code interpreters in Python or JS/TS. We saw this need after a lot of our users have been adding code execution capabilities to their AI apps with our core SDK [3]. These use cases were often centered around AI data analysis so code interpreter-like behavior made sense
The way our code interpret SDK works is by spawning an E2B sandbox with Jupyter Server. We then communicate with this Jupyter server through Jupyter Kernel messaging protocol [4].
We don't do any wrapping around LLM, any prompting, or any agent-like framework. We leave all of that on users. We're really just a boring code execution layer that sats at the bottom that we're building specifically for the future software that will be building another software. We work with any LLM. Here's how we added code interpreter to Claude [5].
Our long-term plan is to build an automated AWS for AI apps and agents.
Happy to answer any questions and hear feedback!
[0] https://e2b.dev/
[1] https://github.com/e2b-dev
[2] https://github.com/firecracker-microvm/firecracker
[3] https://e2b.dev/docs
[4] https://jupyter-client.readthedocs.io/en/latest/messaging.ht...
[5] https://github.com/e2b-dev/e2b-cookbook/blob/main/examples/c...
-
Hi, I'm the CEO of the company that built this SDK.
We're a company called E2B [0]. We're building and open-source [1] secure environments for running untrusted AI-generated code and AI agents. We call these environments sandboxes and they are built on top of micro VM called Firecracker [2].
You can think of us as giving small cloud computers to LLMs.
We recently created a dedicated SDK for building custom code interpreters in Python or JS/TS. We saw this need after a lot of our users have been adding code execution capabilities to their AI apps with our core SDK [3]. These use cases were often centered around AI data analysis so code interpreter-like behavior made sense
The way our code interpret SDK works is by spawning an E2B sandbox with Jupyter Server. We then communicate with this Jupyter server through Jupyter Kernel messaging protocol [4].
We don't do any wrapping around LLM, any prompting, or any agent-like framework. We leave all of that on users. We're really just a boring code execution layer that sats at the bottom that we're building specifically for the future software that will be building another software. We work with any LLM. Here's how we added code interpreter to Claude [5].
Our long-term plan is to build an automated AWS for AI apps and agents.
Happy to answer any questions and hear feedback!
[0] https://e2b.dev/
[1] https://github.com/e2b-dev
[2] https://github.com/firecracker-microvm/firecracker
[3] https://e2b.dev/docs
[4] https://jupyter-client.readthedocs.io/en/latest/messaging.ht...
[5] https://github.com/e2b-dev/e2b-cookbook/blob/main/examples/c...
-
Hi, I'm the CEO of the company that built this SDK.
We're a company called E2B [0]. We're building and open-source [1] secure environments for running untrusted AI-generated code and AI agents. We call these environments sandboxes and they are built on top of micro VM called Firecracker [2].
You can think of us as giving small cloud computers to LLMs.
We recently created a dedicated SDK for building custom code interpreters in Python or JS/TS. We saw this need after a lot of our users have been adding code execution capabilities to their AI apps with our core SDK [3]. These use cases were often centered around AI data analysis so code interpreter-like behavior made sense
The way our code interpret SDK works is by spawning an E2B sandbox with Jupyter Server. We then communicate with this Jupyter server through Jupyter Kernel messaging protocol [4].
We don't do any wrapping around LLM, any prompting, or any agent-like framework. We leave all of that on users. We're really just a boring code execution layer that sats at the bottom that we're building specifically for the future software that will be building another software. We work with any LLM. Here's how we added code interpreter to Claude [5].
Our long-term plan is to build an automated AWS for AI apps and agents.
Happy to answer any questions and hear feedback!
[0] https://e2b.dev/
[1] https://github.com/e2b-dev
[2] https://github.com/firecracker-microvm/firecracker
[3] https://e2b.dev/docs
[4] https://jupyter-client.readthedocs.io/en/latest/messaging.ht...
[5] https://github.com/e2b-dev/e2b-cookbook/blob/main/examples/c...