clearml
kedro-great
clearml | kedro-great | |
---|---|---|
20 | 1 | |
5,607 | 52 | |
1.2% | - | |
7.5 | 0.0 | |
10 days ago | almost 2 years ago | |
Python | Python | |
Apache License 2.0 | MIT License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
clearml
- FLaNK Stack Weekly 12 February 2024
-
clearml VS cascade - a user suggested alternative
2 projects | 5 Dec 2023
-
cascade alternatives - clearml and MLflow
3 projects | 1 Nov 2023
- Is there any workflow orchestrator that is Hydra friendly ?
-
Show HN: Open-source infra for data scientists
It looks like Magniv is targeting Python in general. This is similar to ClearML. What are the differentiating points to Magniv compared to similar products?
It seems like the product also integrates with SCM systems. Are you using gitea and then containers to push code and data to execution like CodeOcean?
https://github.com/allegroai/clearml
https://codeocean.com/
-
[D] Drop your best open source Deep learning related Project
Hi there. ClearML is our open-source solution which is part of the PyTorch ecosystem. We would really appreciate it if you read our README and starred us if you like what you see!
- Start with powerful experiment management and scale into full MLOps with only 2 lines of code.
- Everything you need to log, share, and version experiments, orchestrate pipelines, and scale within one open-source MLOps solution.
- Start with powerful experiment management and scale into full MLOps with only 2 lines of code
kedro-great
-
[D] What’s the simplest, most lightweight but complete and 100% open source MLOps toolkit? -> MY OWN CONCLUSIONS
I expected Great Expectations library to be recommended, but nobody told anything. Instead, unit testing and/or smoke tests using pytest. And checking them with Jenkins. Anyway, if Kedro ends up being our project template, I'll keep an eye on the plugin with Great Expectations.
What are some alternatives?
MLflow - Open source platform for the machine learning lifecycle
great_expectations - Always know what to expect from your data.
BentoML - The easiest way to serve AI apps and models - Build reliable Inference APIs, LLM apps, Multi-model chains, RAG service, and much more!
Poetry - Python packaging and dependency management made easy
metaflow - Open Source Platform for developing, scaling and deploying serious ML, AI, and data science systems
streamlit - Streamlit — A faster way to build and share data apps.
ploomber - The fastest ⚡️ way to build data pipelines. Develop iteratively, deploy anywhere. ☁️
feast - The Open Source Feature Store for Machine Learning
fastapi - FastAPI framework, high performance, easy to learn, fast to code, ready for production