clearml
ploomber
clearml | ploomber | |
---|---|---|
20 | 121 | |
5,620 | 3,500 | |
1.4% | 0.8% | |
7.5 | 6.4 | |
2 days ago | 23 days ago | |
Python | Python | |
Apache License 2.0 | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
clearml
- FLaNK Stack Weekly 12 February 2024
-
clearml VS cascade - a user suggested alternative
2 projects | 5 Dec 2023
-
cascade alternatives - clearml and MLflow
3 projects | 1 Nov 2023
- Is there any workflow orchestrator that is Hydra friendly ?
-
Show HN: Open-source infra for data scientists
It looks like Magniv is targeting Python in general. This is similar to ClearML. What are the differentiating points to Magniv compared to similar products?
It seems like the product also integrates with SCM systems. Are you using gitea and then containers to push code and data to execution like CodeOcean?
https://github.com/allegroai/clearml
https://codeocean.com/
-
[D] Drop your best open source Deep learning related Project
Hi there. ClearML is our open-source solution which is part of the PyTorch ecosystem. We would really appreciate it if you read our README and starred us if you like what you see!
- Start with powerful experiment management and scale into full MLOps with only 2 lines of code.
- Everything you need to log, share, and version experiments, orchestrate pipelines, and scale within one open-source MLOps solution.
- Start with powerful experiment management and scale into full MLOps with only 2 lines of code
ploomber
-
Show HN: JupySQL – a SQL client for Jupyter (ipython-SQL successor)
- One-click sharing powered by Ploomber Cloud: https://ploomber.io
Documentation: https://jupysql.ploomber.io
Note that JupySQL is a fork of ipython-sql; which is no longer actively developed. Catherine, ipython-sql's creator, was kind enough to pass the project to us (check out ipython-sql's README).
We'd love to learn what you think and what features we can ship for JupySQL to be the best SQL client! Please let us know in the comments!
-
Runme – Interactive Runbooks Built with Markdown
For those who don't know, Jupyter has a bash kernel: https://github.com/takluyver/bash_kernel
And you can run Jupyter notebooks from the CLI with Ploomber: https://github.com/ploomber/ploomber
-
Rant: Jupyter notebooks are trash.
Develop notebook-based pipelines
-
Who needs MLflow when you have SQLite?
Fair point. MLflow has a lot of features to cover the end-to-end dev cycle. This SQLite tracker only covers the experiment tracking part.
We have another project to cover the orchestration/pipelines aspect: https://github.com/ploomber/ploomber and we have plans to work on the rest of features. For now, we're focusing on those two.
-
New to large SW projects in Python, best practices to organize code
I recommend taking a look at the ploomber open source. It helps you structure your code and parameterize it in a way that's easier to maintain and test. Our blog has lots of resources about it from testing your code to building a data science platform on AWS.
-
A three-part series on deploying a Data Science Platform on AWS
Developing end-to-end data science infrastructure can get complex. For example, many of us might have struggled to try to integrate AWS services and deal with configuration, permissions, etc. At Ploomber, we’ve worked with many companies in a wide range of industries, such as energy, entertainment, computational chemistry, and genomics, so we are constantly looking for simple solutions to get them started with Data Science in the cloud.
- Ploomber Cloud - Parametrizing and running notebooks in the cloud in parallel
-
Is Colab still the place to go?
If you like working locally with notebooks, you can run via the free tier of ploomber, that'll allow you to get the Ram/Compute you need for the bigger models as part of the free tier. Also, it has the historical executions so you don't need to remember what you executed an hour later!
-
Alternatives to nextflow?
It really depends on your use cases, I've seen a lot of those tools that lock you into a certain syntax, framework or weird language (for instance Groovy). If you'd like to use core python or Jupyter notebooks I'd recommend Ploomber, the community support is really strong, there's an emphasis on observability and you can deploy it on any executor like Slurm, AWS Batch or Airflow. In addition, there's a free managed compute (cloud edition) where you can run certain bioinformatics flows like Alphafold or Cripresso2
-
Saving log files
That's what we do for lineage with https://ploomber.io/
What are some alternatives?
MLflow - Open source platform for the machine learning lifecycle
Kedro - Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.
BentoML - The easiest way to serve AI apps and models - Build reliable Inference APIs, LLM apps, Multi-model chains, RAG service, and much more!
papermill - 📚 Parameterize, execute, and analyze notebooks
metaflow - Open Source Platform for developing, scaling and deploying serious ML, AI, and data science systems
dagster - An orchestration platform for the development, production, and observation of data assets.
kedro-great - The easiest way to integrate Kedro and Great Expectations
dvc - 🦉 ML Experiments and Data Management with Git
streamlit - Streamlit — A faster way to build and share data apps.
argo - Workflow Engine for Kubernetes
feast - The Open Source Feature Store for Machine Learning