clearml
BentoML
clearml | BentoML | |
---|---|---|
20 | 17 | |
5,620 | 7,060 | |
1.4% | 1.8% | |
7.5 | 9.7 | |
5 days ago | 5 days ago | |
Python | Python | |
Apache License 2.0 | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
clearml
- FLaNK Stack Weekly 12 February 2024
-
clearml VS cascade - a user suggested alternative
2 projects | 5 Dec 2023
-
cascade alternatives - clearml and MLflow
3 projects | 1 Nov 2023
- Is there any workflow orchestrator that is Hydra friendly ?
-
Show HN: Open-source infra for data scientists
It looks like Magniv is targeting Python in general. This is similar to ClearML. What are the differentiating points to Magniv compared to similar products?
It seems like the product also integrates with SCM systems. Are you using gitea and then containers to push code and data to execution like CodeOcean?
https://github.com/allegroai/clearml
https://codeocean.com/
-
[D] Drop your best open source Deep learning related Project
Hi there. ClearML is our open-source solution which is part of the PyTorch ecosystem. We would really appreciate it if you read our README and starred us if you like what you see!
- Start with powerful experiment management and scale into full MLOps with only 2 lines of code.
- Everything you need to log, share, and version experiments, orchestrate pipelines, and scale within one open-source MLOps solution.
- Start with powerful experiment management and scale into full MLOps with only 2 lines of code
BentoML
-
Recapping the AI, Machine Learning and Computer Meetup — August 15, 2024
As a data scientist/ML practitioner, how would you feel if you can independently iterate on your data science projects without ever worrying about operational overheads like deployment or containerization? Let’s find out by walking you through a sample project that helps you do so! We’ll combine Python, AWS, Metaflow and BentoML into a template/scaffolding project with sample code to train, serve, and deploy ML models…while making it easy to swap in other ML models.
-
Who's hiring developer advocates? (December 2023)
Link to GitHub -->
-
project ideas/advice for entry-level grad jobs?
there are a few tools you can use as "cheat mode" shortcuts to give you a leg up as you're getting started. here's one: https://github.com/bentoml/BentoML
-
Two high schoolers trying to use Azure/GCP/AWS- need help!
Then you can look into bentoml https://github.com/bentoml/BentoML which is used to deploy ml stuff with many more benifits.
- Ask HN: Who is hiring? (November 2022)
-
[D] How to get the fastest PyTorch inference and what is the "best" model serving framework?
For 2), I am aware of a few options. Triton inference server is an obvious one as is the ‘transformer-deploy’ version from LDS. My only reservation here is that they require the model compilation or are architecture specific. I am aware of others like Bento, Ray serving and TorchServe. Ideally I would have something that allows any (PyTorch model) to be used without the extra compilation effort (or at least optionally) and has some convenience things like ease of use, easy to deploy, easy to host multiple models and can perform some dynamic batching. Anyway, I am really interested to hear people's experience here as I know there are now quite a few options! Any help is appreciated! Disclaimer - I have no affiliation or are connected in any way with the libraries or companies listed here. These are just the ones I know of. Thanks in advance.
- PostgresML is 8-40x faster than Python HTTP microservices
- Congratulations on v1.0, BentoML 🍱 ! You are r/mlops OSS of the month!
-
Show HN: Truss – serve any ML model, anywhere, without boilerplate code
In this category I’m a big fan of https://github.com/bentoml/BentoML
What I like about it is their idiomatic developer experience. It reminds me of other Pythonic frameworks like Flask and Django in a good way.
I have no affiliation with them whatsoever, just an admirer.
-
[P] Introducing BentoML 1.0 - A faster way to ship your models to production
Github Page: https://github.com/bentoml/BentoML
What are some alternatives?
MLflow - Open source platform for the machine learning lifecycle
fastapi - FastAPI framework, high performance, easy to learn, fast to code, ready for production
metaflow - Open Source Platform for developing, scaling and deploying serious ML, AI, and data science systems
seldon-core - An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models
kedro-great - The easiest way to integrate Kedro and Great Expectations
haystack - :mag: AI orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. With advanced retrieval methods, it's best suited for building RAG, question answering, semantic search or conversational agent chatbots.
ploomber - The fastest ⚡️ way to build data pipelines. Develop iteratively, deploy anywhere. ☁️
Kedro - Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.
streamlit - Streamlit — A faster way to build and share data apps.
kubeflow - Machine Learning Toolkit for Kubernetes
feast - The Open Source Feature Store for Machine Learning