autograd VS julia

Compare autograd vs julia and see what are their differences.

InfluxDB - Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
autograd julia
6 350
6,797 44,534
0.7% 0.5%
6.0 10.0
7 days ago 3 days ago
Python Julia
MIT License MIT License
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

autograd

Posts with mentions or reviews of autograd. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-09-28.
  • JAX – NumPy on the CPU, GPU, and TPU, with great automatic differentiation
    12 projects | news.ycombinator.com | 28 Sep 2023
    Actually, that's never been a constraint for JAX autodiff. JAX grew out of the original Autograd (https://github.com/hips/autograd), so differentiating through Python control flow always worked. It's jax.jit and jax.vmap which place constraints on control flow, requiring structured control flow combinators like those.
  • Autodidax: Jax Core from Scratch (In Python)
    4 projects | news.ycombinator.com | 11 Feb 2023
    I'm sure there's a lot of good material around, but here are some links that are conceptually very close to the linked Autodidax.

    There's [Autodidact](https://github.com/mattjj/autodidact), a predecessor to Autodidax, which was a simplified implementation of [the original Autograd](https://github.com/hips/autograd). It focuses on reverse-mode autodiff, not building an open-ended transformation system like Autodidax. It's also pretty close to the content in [these lecture slides](https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slid...) and [this talk](http://videolectures.net/deeplearning2017_johnson_automatic_...). But the autodiff in Autodidax is more sophisticated and reflects clearer thinking. In particular, Autodidax shows how to implement forward- and reverse-modes using only one set of linearization rules (like in [this paper](https://arxiv.org/abs/2204.10923)).

    Here's [an even smaller and more recent variant](https://gist.github.com/mattjj/52914908ac22d9ad57b76b685d19a...), a single ~100 line file for reverse-mode AD on top of NumPy, which was live-coded during a lecture. There's no explanatory material to go with it though.

  • Numba: A High Performance Python Compiler
    11 projects | news.ycombinator.com | 27 Dec 2022
    XLA is "higher level" than what Numba produces.

    You may be able to get the equivalent of jax via numba+numpy+autograd[1], but I haven't tried it before.

    IMHO, jax is best thought of as a numerical computation library that happens to include autograd, vmapping, pmapping and provides a high level interface for XLA.

    I have built a numerical optimisation library with it, and although a few things became verbose, it was a rather pleasant experience as the natural vmapping made everything a breeze, I didn't have to write the gradients for my testing functions, except for special cases that involved exponents and logs that needed a bit of delicate care.

    [1] https://github.com/HIPS/autograd

  • Run Your Own DALL·E Mini (Craiyon) Server on EC2
    16 projects | dev.to | 26 Jul 2022
    Next, we want the code in the https://github.com/hrichardlee/dalle-playground repo, and we want to construct a pip environment from the backend/requirements.txt file in that repo. We were almost able to use the saharmor/dalle-playground repo as-is, but we had to make one change to add the jax[cuda] package to the requirements.txt file. In case you haven’t seen jax before, jax is a machine-learning library from Google, roughly equivalent to Tensorflow or PyTorch. It combines Autograd for automatic differentiation and XLA (accelerated linear algebra) for JIT-compiling numpy-like code for Google’s TPUs or Nvidia’s CUDA API for GPUs. The CUDA support requires explicitly selecting the [cuda] option when we install the package.
  • Trade-Offs in Automatic Differentiation: TensorFlow, PyTorch, Jax, and Julia
    7 projects | news.ycombinator.com | 25 Dec 2021
    > fun fact, the Jax folks at Google Brain did have a Python source code transform AD at one point but it was scrapped essentially because of these difficulties

    I assume you mean autograd?

    https://github.com/HIPS/autograd

  • JAX - COMPARING WITH THE BIG ONES
    2 projects | /r/CryptocurrencyICO | 6 Sep 2021
    These four points lead to an enormous differentiation in the ecosystem: Keras, for example, was originally thought to be almost completely focused on point (4), leaving the other tasks to a backend engine. In 2015, on the other hand, Autograd focused on the first two points, allowing users to write code using only "classic" Python and NumPy constructs, providing subsequently many options for point (2). Autograd's simplicity greatly influenced the development of the libraries to follow, but it was penalized by the clear lack of the points (3) and (4), i.e. adequate techniques to speed up the code and sufficiently abstract modules for neural network development.

julia

Posts with mentions or reviews of julia. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-03-06.
  • Top Paying Programming Technologies 2024
    19 projects | dev.to | 6 Mar 2024
    34. Julia - $74,963
  • Optimize sgemm on RISC-V platform
    6 projects | news.ycombinator.com | 28 Feb 2024
    I don't believe there is any official documentation on this, but https://github.com/JuliaLang/julia/pull/49430 for example added prefetching to the marking phase of a GC which saw speedups on x86, but not on M1.
  • Dart 3.3
    2 projects | news.ycombinator.com | 15 Feb 2024
    3. dispatch on all the arguments

    the first solution is clean, but people really like dispatch.

    the second makes calling functions in the function call syntax weird, because the first argument is privileged semantically but not syntactically.

    the third makes calling functions in the method call syntax weird because the first argument is privileged syntactically but not semantically.

    the closest things to this i can think of off the top of my head in remotely popular programming languages are: nim, lisp dialects, and julia.

    nim navigates the dispatch conundrum by providing different ways to define free functions for different dispatch-ness. the tutorial gives a good overview: https://nim-lang.org/docs/tut2.html

    lisps of course lack UFCS.

    see here for a discussion on the lack of UFCS in julia: https://github.com/JuliaLang/julia/issues/31779

    so to sum up the answer to the original question: because it's only obvious how to make it nice and tidy like you're wanting if you sacrifice function dispatch, which is ubiquitous for good reason!

  • Julia 1.10 Highlights
    1 project | news.ycombinator.com | 27 Dec 2023
    https://github.com/JuliaLang/julia/blob/release-1.10/NEWS.md
  • Best Programming languages for Data Analysis📊
    4 projects | dev.to | 7 Dec 2023
    Visit official site: https://julialang.org/
  • Potential of the Julia programming language for high energy physics computing
    10 projects | news.ycombinator.com | 4 Dec 2023
    No. It runs natively on ARM.

    julia> versioninfo() Julia Version 1.9.3 Commit bed2cd540a1 (2023-08-24 14:43 UTC) Build Info: Official https://julialang.org/ release

  • Rust std:fs slower than Python
    7 projects | news.ycombinator.com | 29 Nov 2023
    https://github.com/JuliaLang/julia/issues/51086#issuecomment...

    So while this "fixes" the issue, it'll introduce a confusing time delay between you freeing the memory and you observing that in `htop`.

    But according to https://jemalloc.net/jemalloc.3.html you can set `opt.muzzy_decay_ms = 0` to remove the delay.

    Still, the musl author has some reservations against making `jemalloc` the default:

    https://www.openwall.com/lists/musl/2018/04/23/2

    > It's got serious bloat problems, problems with undermining ASLR, and is optimized pretty much only for being as fast as possible without caring how much memory you use.

    With the above-mentioned tunables, this should be mitigated to some extent, but the general "theme" (focusing on e.g. performance vs memory usage) will likely still mean "it's a tradeoff" or "it's no tradeoff, but only if you set tunables to what you need".

  • Eleven strategies for making reproducible research the norm
    1 project | news.ycombinator.com | 25 Nov 2023
    I have asked about Julia's reproducibility story on the Guix mailing list in the past, and at the time Simon Tournier didn't think it was promising. I seem to recall Julia itself didnt have a reproducible build. All I know now is that github issue is still not closed.

    https://github.com/JuliaLang/julia/issues/34753

  • Julia as a unifying end-to-end workflow language on the Frontier exascale system
    5 projects | news.ycombinator.com | 19 Nov 2023
    I don't really know what kind of rebuttal you're looking for, but I will link my HN comments from when this was first posted for some thoughts: https://news.ycombinator.com/item?id=31396861#31398796. As I said, in the linked post, I'm quite skeptical of the business of trying to assess relative buginess of programming in different systems, because that has strong dependencies on what you consider core vs packages and what exactly you're trying to do.

    However, bugs in general suck and we've been thinking a fair bit about what additional tooling the language could provide to help people avoid the classes of bugs that Yuri encountered in the post.

    The biggest class of problems in the blog post, is that it's pretty clear that `@inbounds` (and I will extend this to `@assume_effects`, even though that wasn't around when Yuri wrote his post) is problematic, because it's too hard to write. My proposal for what to do instead is at https://github.com/JuliaLang/julia/pull/50641.

    Another common theme is that while Julia is great at composition, it's not clear what's expected to work and what isn't, because the interfaces are informal and not checked. This is a hard design problem, because it's quite close to the reasons why Julia works well. My current thoughts on that are here: https://github.com/Keno/InterfaceSpecs.jl but there's other proposals also.

  • Getaddrinfo() on glibc calls getenv(), oh boy
    10 projects | news.ycombinator.com | 16 Oct 2023
    Doesn't musl have the same issue? https://github.com/JuliaLang/julia/issues/34726#issuecomment...

    I also wonder about OSX's libc. Newer versions seem to have some sort of locking https://github.com/apple-open-source-mirror/Libc/blob/master...

    but older versions (from 10.9) don't have any lockign: https://github.com/apple-oss-distributions/Libc/blob/Libc-99...

What are some alternatives?

When comparing autograd and julia you can also consider the following projects:

Enzyme - High-performance automatic differentiation of LLVM and MLIR.

jax - Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

SwinIR - SwinIR: Image Restoration Using Swin Transformer (official repository)

NetworkX - Network Analysis in Python

jaxonnxruntime - A user-friendly tool chain that enables the seamless execution of ONNX models using JAX as the backend.

Lua - Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural programming, object-oriented programming, functional programming, data-driven programming, and data description.

autodidact - A pedagogical implementation of Autograd

rust-numpy - PyO3-based Rust bindings of the NumPy C-API

fbpic - Spectral, quasi-3D Particle-In-Cell code, for CPU and GPU

Numba - NumPy aware dynamic Python compiler using LLVM

pure_numba_alias_sampling - Pure numba version of Alias sampling algorithm from L. Devroye's, "Non-Uniform Random Random Variate Generation"

F# - Please file issues or pull requests here: https://github.com/dotnet/fsharp