RUM access method - inverted index with additional information in posting lists (by postgrespro)

Rum Alternatives

Similar projects and alternatives to rum

NOTE: The number of mentions on this list indicates mentions on common posts plus user suggested alternatives. Hence, a higher number means a better rum alternative or higher similarity.

rum discussion

Log in or Post with

rum reviews and mentions

Posts with mentions or reviews of rum. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-04-10.
  • Code Search Is Hard
    13 projects | | 10 Apr 2024
    the rum index has worked well for us on roughly 1TB of pdfs. written by postgrespro, same folks who wrote core text search and json indexing. not sure why rum not in core. we have no problems.
  • Is it worth using Postgres' builtin full-text search or should I go straight to Elastic?
    2 projects | /r/PostgreSQL | 25 Apr 2023
    If you need ranking, and you have the possibility to install PostgreSQL extensions, then you can consider an extension providing RUM indexes: Otherwise, you'll have to use an "external" FTS engine like ElasticSearch.
  • Features I'd Like in PostgreSQL
    14 projects | | 28 Jan 2023
    >Reduce the memory usage of prepared queries

    Yes query plan reuse like every other db, this still blows me away PG replans every time unless you explicitly prepare and that's still per connection.

    Better full-text scoring is one for me that's missing in that list, TF/IDF or BM25 please see:

  • Ask HN: Books about full text search
    3 projects | | 24 Nov 2022
    for postgres, i highly recommend the rum index over the core fts. rum is written by postgrespro, who also wrote core fts and json indexing in pg.
  • Postgres Full Text Search vs. the Rest
    21 projects | | 14 Oct 2022
    My experience with Postgres FTS (did a comparison with Elastic a couple years back), is that filtering works fine and is speedy enough, but ranking crumbles when the resulting set is large.

    If you have a large-ish data set with lots of similar data (4M addresses and location names was the test case), Postgres FTS just doesn't perform.

    There is no index that helps scoring results. You would have to install an extension like RUM index ( to improve this, which may or may not be an option (often not if you use managed databases).

    If you want a best of both worlds, one could investigate this extensions (again, often not an option for managed databases):

    Either way, writing something that indexes your postgres database into elastic/opensearch is a one time investment that usually pays off in the long run.

  • Postgres Full-Text Search: A Search Engine in a Database
    3 projects | | 11 Jul 2022
    Mandatory mention of the RUM extension ( if this caught your eye. Lots of tutorials and conference presentations out there showcasing the advantages in terms of ranking, timestamps...
    10 projects | | 27 Jul 2021
    You might be just fine adding an unindexed tsvector column, since you've already filtered down the results.

    The GIN indexes for FTS don't really work in conjunction with other indices, which is why exists. Luckily, it sounds like you can use your existing indices to filter and let postgres scan for matches on the tsvector.

  • Postgrespro/rum: RUM access method – inverted index with additional information
    1 project | | 17 Dec 2021
  • Debugging random slow writes in PostgreSQL
    1 project | | 15 May 2021
    We have been bitten by the same behavior. I gave a talk with a friend about this exact topic (diagnosing GIN pending list updates) at PGCon 2019 in Ottawa[1][2].

    What you need to know is that the pending list will be merged with the main b-tree during several operations. Only one of them is so extremely critical for your insert performance - that is during actual insert. Both vacuum and autovacuum (including autovacuum analyze but not direct analyze) will merge the pending list. So frequent autovacuums are the first thing you should tune. Merging on insert happens when you exceed the gin_pending_list_limit. In all cases it is also interesting to know which memory parameter is used to rebuild the index as that inpacts how long it will take: work_mem (when triggered on insert), autovacuum_work_mem (when triggered during autovauum) and maintainance_work_mem (triggered by a call to gin_clean_pending_list()) define how much memory can be used for the rebuild.

    What you can do is:

    - tune the size of the pending list (like you did)

    - make sure vacuum runs frequently

    - if you have a bulk insert heavy workload (ie. nightly imports), drop the index and create it after inserting rows (not always makes sense business wise, depends on your app)

    - disable fastupdate, you pay a higher cost per insert but remove the fluctuctuation when the merge needs to happen

    The first thing was done in the article. However I believe the author still relies on the list being merged on insert. If vacuums were tuned agressively along with the limit (vacuums can be tuned per table). Then the list would be merged out of bound of ongoing inserts.

    I also had the pleasure of speaking with one main authors of GIN indexes (Oleg Bartunov) during the mentioned PGCon. He gave probably the best solution and informed me to "just use RUM indexes". RUM[3] indexes are like GIN indexes, without the pending list and with faster ranking, faster phrase searches and faster timestamp based ordering. It is however out of the main postgresql release so it might be hard to get it running if you don't control the extensions that are loaded to your Postgres instance.

    [1] - wideo

    [2] - slides's%20...

    [3] -

  • Show HN: Full text search Project Gutenberg (60m paragraphs)
    5 projects | | 24 Jan 2021
    I suggest to have a look at if you haven’t yet. It solves the issue of slow ranking in PostgreSQL FTS.
  • A note from our sponsor - InfluxDB | 19 Jun 2024
    Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality. Learn more →


Basic rum repo stats
27 days ago

Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.