jitsu

Jitsu is an open-source Segment alternative. Fully-scriptable data ingestion engine for modern data teams. Set-up a real-time data pipeline in minutes, not days (by jitsucom)

Jitsu Alternatives

Similar projects and alternatives to jitsu

  • airbyte

    jitsu VS airbyte

    Data integration platform for ELT pipelines from APIs, databases & files to warehouses & lakes.

  • Snowplow

    jitsu VS Snowplow

    The enterprise-grade behavioral data engine (web, mobile, server-side, webhooks), running cloud-natively on AWS and GCP

  • Appwrite

    Appwrite - The Open Source Firebase alternative introduces iOS support . Appwrite is an open source backend server that helps you build native iOS applications much faster with realtime APIs for authentication, databases, files storage, cloud functions and much more!

  • Airflow

    jitsu VS Airflow

    Apache Airflow - A platform to programmatically author, schedule, and monitor workflows

  • monosi

    jitsu VS monosi

    Open source data observability platform

  • posthog-ios

    jitsu VS posthog-ios

    PostHog iOS integration

  • superset

    jitsu VS superset

    Apache Superset is a Data Visualization and Data Exploration Platform

  • sqlpad

    jitsu VS sqlpad

    Web-based SQL editor. Legacy project in maintenance mode.

  • Sonar

    Write Clean JavaScript Code. Always.. Sonar helps you commit clean code every time. With over 300 unique rules to find JavaScript bugs, code smells & vulnerabilities, Sonar finds the issues while you focus on the work.

  • Plausible Analytics

    jitsu VS Plausible Analytics

    Simple, open-source, lightweight (< 1 KB) and privacy-friendly web analytics alternative to Google Analytics.

  • Ackee

    jitsu VS Ackee

    Self-hosted, Node.js based analytics tool for those who care about privacy.

  • uBlock-issues

    This is the community-maintained issue tracker for uBlock Origin

  • GoatCounter

    jitsu VS GoatCounter

    Easy web analytics. No tracking of personal data.

  • grouparoo

    jitsu VS grouparoo

    🦘 The Grouparoo Monorepo - open source customer data sync framework

  • projects

    jitsu VS projects

    Sample projects using Ploomber. (by ploomber)

  • Matomo

    jitsu VS Matomo

    Liberating Web Analytics. Star us on Github? +1. Matomo is the leading open alternative to Google Analytics that gives you full control over your data. Matomo lets you easily collect data from websites & apps and visualise this data and extract insights. Privacy is built-in. We love Pull Requests!

  • Umami

    jitsu VS Umami

    Umami is a simple, fast, privacy-focused alternative to Google Analytics.

  • great_expectations

    Always know what to expect from your data.

  • dagster

    jitsu VS dagster

    An orchestration platform for the development, production, and observation of data assets.

  • dbt-core

    jitsu VS dbt-core

    dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

  • lightdash

    jitsu VS lightdash

    Open source BI for teams that move fast ⚡️

  • pirsch

    jitsu VS pirsch

    Pirsch is a drop-in, server-side, no-cookie, and privacy-focused analytics solution for Go.

  • InfluxDB

    Access the most powerful time series database as a service. Ingest, store, & analyze all types of time series data in a fully-managed, purpose-built database. Keep data forever with low-cost storage and superior data compression.

NOTE: The number of mentions on this list indicates mentions on common posts plus user suggested alternatives. Hence, a higher number means a better jitsu alternative or higher similarity.

jitsu reviews and mentions

Posts with mentions or reviews of jitsu. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2022-07-19.
  • Any examples of working activist, socialist, or community-organizing software?
    5 projects | reddit.com/r/socialistprogrammers | 19 Jul 2022
  • Lesser Known Features of ClickHouse
    6 projects | news.ycombinator.com | 31 May 2022
    you may check: https://github.com/jitsucom/jitsu. "Jitsu is an open-source Segment alternative. Fully-scriptable data ingestion engine for modern data teams. Set-up a real-time data pipeline in minutes, not days"

    You can create an API endpoint, and send those JSON to it. In the "destination" part, it can sync to clickhouse (one of many choices, like redshift, snowflake,besides clickhouse) very quickly, and flatten the JSON into columns. If there is new key found in JSON, it will create a new column in clickhouse.

  • Reference Data Stack for Data-Driven Startups
    8 projects | dev.to | 3 Mar 2022
    We also have telemetry set up on our Monosi product which is collected through Snowplow,. As with Airbyte, we chose Snowplow because of its open source offering and because of their scalable event ingestion framework. There are other open source options to consider including Jitsu and RudderStack or closed source options like Segment. Since we started building our product with just a CLI offering, we didn’t need a full CDP solution so we chose Snowplow.
  • Data pipeline suggestions
    13 projects | reddit.com/r/dataengineering | 4 Feb 2022
    Ingestion / Extraction: Airbyte, Singer, Jitsu
  • Where can I find free data engineering ( big data) projects online?
    14 projects | reddit.com/r/dataengineering | 27 Jan 2022
    Ingestion / ETL: Airbyte, Singer, Jitsu Transformation: dbt Orchestration: Airflow, Dagster Testing: GreatExpectations Observability: Monosi Reverse ETL: Grouparoo, Castled Visualization: Lightdash, Superset
  • Ask HN: Good open source alternatives to Google Analytics?
    30 projects | news.ycombinator.com | 11 Jan 2022
  • Launch HN: Jitsu (YC S20) – Open-Source Segment Alternative
    7 projects | news.ycombinator.com | 4 Nov 2021
    Hey HN! Vlad here with Sergey, Ildar, and Kirill. We are building Jitsu, an open-source Segment alternative ((https://github.com/jitsucom/jitsu, https://jitsu.com/). We help companies collect events from their apps, websites, and APIs and send them to databases.

    I've been doing data engineering for more than ten years (half of that time, I didn't know that it's called "data engineering”). Before Jitsu, I was a co-founder and CTO of GetIntent, an ad-tech startup. Although it was ad-tech (I'm sorry for that!), we also built a quite fascinating technology platform. We processed up to 1 million events per second at peak, and all those events needed to be stored somewhere.

    We churned through a few data warehouse platforms along the way. In 2013, we started with Hadoop's HDFS and a bunch of map-reduce jobs on top of it. Then, when we decided to allow our customers to run ad-hoc reports, we switched to BigQuery. BigQuery was great, but expensive—especially with some customers obsessively clicking the refresh button. Finally, in 2017 we migrated to self-hosted ClickHouse which in my opinion is still the best analytics database in the world.

    All that time, we spent a fair amount of effort to get data to the database. When you're dealing with millions of events per minute, running an INSERT statement per event won't work. What if the DB is down for maintenance? How can you be sure that all 50+ edge nodes are aware of recent DB schema changes? Also, did you know streaming data to BigQuery is costly while batching data is free?

    We tried different approaches: first, we would write local log files, sync them to HDFS, and load data to BQ (or ClickHouse) with map-reduce jobs. To improve data freshness, we ditched HDFS and started to send data in batches to the DB directly from edge servers. We experimented with Kafka, but it felt too complex for that task at the time.

    I always dreamed about a straightforward service, to which I'd throw JSON objects, and it would take care of the rest: queueing, retrying, updating database schema, etc.

    Then I discovered Segment. I liked it at first. It seemed very developer-friendly with a nice API and excellent documentation. But the pricing model and data delays (the event gets to DB in 12 hours after it has been sent to Segment) killed the whole idea. And it was not open-sourced. In my opinion, being open-source and self-hostable is a must for such a fundamental part of the architecture as data collection.

    I left GetIntent and got accepted to YC with a different idea for the Summer 2020 batch. The idea was to build a churn prevention and BI tool for online retailers. It didn't take off, but in the process we made a component to collect customer's app events and put it to DB. We tried to hack a solution on top of the ELK stack, but I was frustrated with ElasticSearch’s lack of SQL support. Here I was back to square one: there's no good open-source event collection service yet, and we needed to build one, once again.

    So we decided to focus solely on that problem. We ditched all the previous code, which was in Java, rewrote the data collection server in Go and hacked together what we called EventNative [1]. It was received very well, and we started to get users.

    Over the last 11 months, we've been busy building the UI, adding Connectors (to pull data from external APIs), polishing data warehouse support, adding javascript support to transform incoming data, and implementing dozens of other features.

    Now we're launching Jitsu, an open-source Segment alternative. With Jitsu, we make it easy to collect data and send it to databases (we support all major players: ClickHouse, Redshift, Snowflake, BigQuery and Postgres). We’re deployed in production, including into a large gaming publisher, eSignature service, and many other great companies. We're going for an open-core model. So far we don't have paid features, but soon we'll have some, presumably around things like authorization and data masking. Also we run Jitsu.Cloud[2] which you can buy if you don’t want to self-host

    Give it a spin: https://github.com/jitsucom/jitsu.

    Thank you for reading this story - I hope it was interesting. I would love to read your feedback on Jitsu and answer questions!

    [1] https://news.ycombinator.com/item?id=24120325

    7 projects | news.ycombinator.com | 4 Nov 2021
    I’m just saying this is better:

    We are building Jitsu, (https://github.com/jitsucom/jitsu, https://jitsu.com/) We help companies collect events from their apps, websites, and APIs and send them to databases.

    Think of us as an open-source Segment alternative.

    7 projects | news.ycombinator.com | 4 Nov 2021
    Thanks! I take it this file is where I can get started to learn more:

    https://github.com/jitsucom/jitsu/blob/0aaa74b59eb9d8c885c80...

    I see that it instantiates an "AsyncLogger" - does the service wait until data is written to the log prior to returning success to the client?

    7 projects | news.ycombinator.com | 4 Nov 2021
    That's a good question. We're aiming to replace Kafka in some cases. There're many ways how people use Kafka. But it could be roughly divided into two buckets

    - Kafka as a company wide message bus: dozen's of (micro)services sending data there, and consumers listens to data. Each service doesn't know which other service will consume the data. For that case, we're not looking to replace Kafka — we're going to work along with it. We have a PR about supporting Kafka as destination [1] (Jitsu sends data to Kafka), and we will support Kafka as a source at some point (PRs are always welcome :))

    - Kafka is used just as a transport between web-app and DB. In that case Jitsu is a perfect replacement

    [1] https://github.com/jitsucom/jitsu/pull/537

    P. S. The same applies to Kinesis too

  • A note from our sponsor - Appwrite
    appwrite.io | 26 Mar 2023
    Appwrite is an open source backend server that helps you build native iOS applications much faster with realtime APIs for authentication, databases, files storage, cloud functions and much more! Learn more →

Stats

Basic jitsu repo stats
12
3,187
9.0
4 days ago
Access the most powerful time series database as a service
Ingest, store, & analyze all types of time series data in a fully-managed, purpose-built database. Keep data forever with low-cost storage and superior data compression.
www.influxdata.com