Other PDF SDKs promise a lot - then break. Laggy scrolling, poor mobile UX, tons of bugs, and lack of support cost you endless frustrations. Nutrient’s SDK handles billion-page workloads - so you don’t have to debug PDFs. Used by ~1 billion end users in more than 150 different countries. Learn more →
Deequ Alternatives
Similar projects and alternatives to deequ
-
snowflake
Discontinued Snowflake is a network service for generating unique ID numbers at high scale with some simple guarantees.
-
CodeRabbit
CodeRabbit: AI Code Reviews for Developers. Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
-
MonitorControl
🖥 Control your display's brightness & volume on your Mac as if it was a native Apple Display. Use Apple Keyboard keys or custom shortcuts. Shows the native macOS OSDs.
-
-
-
-
delta
An open-source storage framework that enables building a Lakehouse architecture with compute engines including Spark, PrestoDB, Flink, Trino, and Hive and APIs (by delta-io)
-
-
Nutrient
Nutrient – The #1 PDF SDK Library, trusted by 10K+ developers. Other PDF SDKs promise a lot - then break. Laggy scrolling, poor mobile UX, tons of bugs, and lack of support cost you endless frustrations. Nutrient’s SDK handles billion-page workloads - so you don’t have to debug PDFs. Used by ~1 billion end users in more than 150 different countries.
-
-
elementary
The dbt-native data observability solution for data & analytics engineers. Monitor your data pipelines in minutes. Available as self-hosted or cloud service with premium features.
-
-
-
-
-
-
-
-
dbt-data-reliability
dbt package that is part of Elementary, the dbt-native data observability solution for data & analytics engineers. Monitor your data pipelines in minutes. Available as self-hosted or cloud service with premium features.
-
BigDL
Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, DeepSeek, Mixtral, Gemma, Phi, MiniCPM, Qwen-VL, MiniCPM-V, etc.) on Intel XPU (e.g., local PC with iGPU and NPU, discrete GPU such as Arc, Flex and Max); seamlessly integrate with llama.cpp, Ollama, HuggingFace, LangChain, LlamaIndex, vLLM, DeepSpeed, Axolotl, etc.
-
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
deequ discussion
deequ reviews and mentions
-
Deequ: Your Data's BFF
Deequ GitHub Repository
-
[Data Quality] Deequ Feedback request
There's no straightforward way to drop and rerun a metric collection. For example, say you detect a problem in your data. You fix it, rerun the pipeline, and replace the bad data with the good. You'd want your metrics history to reflect the true state of your data. But the "bad run" cannot be dropped. Issue
-
Thoughts on a business rules engine
I had similar requirements for QA reporting on large and diverse data sets. I implemented data check pipelines, with rules in AWS Deequ (https://github.com/awslabs/deequ) running on an Apache Spark cluster. The Deequ worked well for me, but there were a few cases where I opted to write the rule checks in the data store to improve throughput (i.e. SQL checks on critical data elements on the database).
-
Building a data quality solution for devs and business people
Hey all! At the companies where I've worked as a developer, I've found that business stakeholders typically want a concrete way to check and assure the quality of data that pipelines are producing, before other downstream systems and users get impacted. I've tested solutions like Deequ, but I found that it made building compliance and data rules a bit more complicated and put a greater emphasis on developers to get the rules right that business was expecting. I also experienced issues with running checks in parallel and getting row level details about the failures.
-
deequ VS cuallee - a user suggested alternative
2 projects | 30 Nov 2022
- November 15-19, 2022 FLiP Stack Weekly
- What are your favourite GitHub repos that shows how data engineering should be done?
- Well designed scala/spark project
-
Soda Core (OSS) is now GA! So, why should you add checks to your data pipelines?
GE is arguably the most well known OSS alternative to Soda Core. The third option is deequ, originally developed and released in OSS by AWS. Our community has told us that Soda Core is different because it’s easy to get going and embed into data pipelines. And it also allows some of the check authoring work to be moved to other members of the data team. I'm sure there are also scenarios where Soda Core is not the best option. For example, when you only use Pandas dataframes or develop in Scala.
-
Congrats on hitting the v1 milestone, whylabs! You're r/MLOps OSS tool of the month!
I wonder how this compares with tools like DeeQu (https://github.com/awslabs/python-deequ - requires Spark) or Pandas Profiling? One plus side I can see is that it doesn't require Apache Spark to run profiling (though a quick look at the code indicates that they are working on Spark support) and can work with real time systems.
-
A note from our sponsor - Nutrient
www.nutrient.io | 15 Feb 2025
Stats
awslabs/deequ is an open source project licensed under Apache License 2.0 which is an OSI approved license.
The primary programming language of deequ is Scala.