Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR. Learn more โ
Db-benchmark Alternatives
Similar projects and alternatives to db-benchmark
-
Pandas
Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more
-
CodeRabbit
CodeRabbit: AI Code Reviews for Developers. Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
-
-
Nim
Nim is a statically typed compiled systems programming language. It combines successful concepts from mature languages like Python, Ada and Modula. Its design focuses on efficiency, expressiveness, and elegance (in that order of priority).
-
-
-
-
DataFrame
C++ DataFrame for statistical, Financial, and ML analysis -- in modern C++ using native types and contiguous memory storage
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
-
Apache Arrow
Apache Arrow is the universal columnar format and multi-language toolbox for fast data interchange and in-memory analytics
-
-
simdjson
Parsing gigabytes of JSON per second : used by Facebook/Meta Velox, the Node.js runtime, ClickHouse, WatermelonDB, Apache Doris, Milvus, StarRocks
-
-
-
-
-
-
explorer
Series (one-dimensional) and dataframes (two-dimensional) for fast and elegant data exploration in Elixir
-
-
-
-
databend
๐๐ฎ๐๐ฎ, ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ & ๐๐. Modern alternative to Snowflake. Cost-effective and simple for massive-scale analytics. https://databend.com
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
db-benchmark discussion
db-benchmark reviews and mentions
- Database-Like Ops Benchmark
-
Polars
Real-world performance is complicated since data science covers a lot of use cases.
If you're just reading a small CSV to do analysis on it, then there will be no human-perceptible difference between Polars and Pandas. If you're reading a larger CSV with 100k rows, there still won't be much of a perceptible difference.
Per this (old) benchmark, there are differences once you get into 500MB+ territory: https://h2oai.github.io/db-benchmark/
-
DuckDB performance improvements with the latest release
I do think it was important for duckdb to put out a new version of the results as the earlier version of that benchmark [1] went dormant with a very old version of duckdb with very bad performance, especially against polars.
[1] https://h2oai.github.io/db-benchmark/
-
Show HN: SimSIMD vs. SciPy: How AVX-512 and SVE make SIMD cleaner and ML faster
https://news.ycombinator.com/item?id=33270638 :
> Apache Ballista and Polars do Apache Arrow and SIMD.
> The Polars homepage links to the "Database-like ops benchmark" of {Polars, data.table, DataFrames.jl, ClickHouse, cuDF, spark, (py)datatable, dplyr, pandas, dask, Arrow, DuckDB, Modin,} but not yet PostgresML? https://h2oai.github.io/db-benchmark/ *
LLM -> Vector database: https://en.wikipedia.org/wiki/Vector_database
/? inurl:awesome site:github.com "vector database"
-
Pandas vs. Julia โ cheat sheet and comparison
I agree with your conclusion but want to add that switching from Julia may not make sense either.
According to these benchmarks: https://h2oai.github.io/db-benchmark/, DF.jl is the fastest library for some things, data.table for others, polars for others. Which is fastest depends on the query and whether it takes advantage of the features/properties of each.
For what it's worth, data.table is my favourite to use and I believe it has the nicest ergonomics of the three I spoke about.
-
Any faster Python alternatives?
Same. Numba does wonders for me in most scenarios. Yesterday I've discovered pola-rs and looks like I will add it to the stack. It's API is similar to pandas. Have a look at the benchmarks of cuDF, spark, dask, pandas compared to it: Benchmarks
-
Pandas 2.0 (with pyarrow) vs Pandas 1.3 - Performance comparison
The syntax has similarities with dplyr in terms of the way you chain operations, and itโs around an order of magnitude faster than pandas and dplyr (thereโs a nice benchmark here). Itโs also more memory-efficient and can handle larger-than-memory datasets via streaming if needed.
-
Pandas v2.0 Released
If interested in benchmarks comparing different dataframe implementations, here is one:
https://h2oai.github.io/db-benchmark/
- Database-like ops benchmark
-
Python "programmers" when I show them how much faster their naive code runs when translated to C++ (this is a joke, I love python)
Bad examples. Both numpy and pandas are notoriously un-optimized packages, losing handily to pretty much all their competitors (R, Julia, kdb+, vaex, polars). See https://h2oai.github.io/db-benchmark/ for a partial comparison.
-
A note from our sponsor - CodeRabbit
coderabbit.ai | 11 Dec 2024
Stats
h2oai/db-benchmark is an open source project licensed under Mozilla Public License 2.0 which is an OSI approved license.
The primary programming language of db-benchmark is R.