SaaSHub helps you find the best software and product alternatives Learn more β
Awkward Alternatives
Similar projects and alternatives to awkward
-
DearPyGui
Dear PyGui: A fast and powerful Graphical User Interface Toolkit for Python with minimal dependencies
-
Scout Monitoring
Free Django app performance insights with Scout Monitoring. Get Scout setup in minutes, and let us sweat the small stuff. A couple lines in settings.py is all you need to start monitoring your apps. Sign up for our free tier today.
-
-
gradio
Build and share delightful machine learning apps, all in Python. π Star to support our work!
-
Apache Arrow
Apache Arrow is the universal columnar format and multi-language toolbox for fast data interchange and in-memory analytics
-
-
-
-
CodeRabbit
CodeRabbit: AI Code Reviews for Developers. Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
-
Activeloop Hub
Discontinued Data Lake for Deep Learning. Build, manage, query, version, & visualize datasets. Stream data real-time to PyTorch/TensorFlow. https://activeloop.ai [Moved to: https://github.com/activeloopai/deeplake] (by activeloopai)
-
-
-
-
evidently
Evidently is ββan open-source ML and LLM observability framework. Evaluate, test, and monitor any AI-powered system or data pipeline. From tabular data to Gen AI. 100+ metrics.
-
-
-
-
-
-
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
awkward discussion
awkward reviews and mentions
-
Efficient Jagged Arrays
there's a whole ecosystem in Python originally developed for high energy physics data processing: https://github.com/scikit-hep/awkward all because Numpy demands square N-dimensional array
Same technique used everywhere, here's a simple Julia pkg for the same thing: https://github.com/JuliaArrays/ArraysOfArrays.jl/blob/3a6f5b...
But Julia at least has the decency to just support ragged Vector{Vector} out of the box, and it's not that slow
-
The hand-picked selection of the best Python libraries released in 2021
Awkward Array.
-
Awkward: Nested, jagged, differentiable, mixed type, GPU-enabled, JIT'd NumPy
Numba's @vectorize decorator (https://numba.pydata.org/numba-doc/latest/user/vectorize.htm...) makes a ufunc, and Awkward Array knows how to implicitly map ufuncs. (It is necessary to specify the signature in the @vectorize argument; otherwise, it won't be a true ufunc and Awkward won't recognize it.)
When Numba's JIT encounters a ctypes function, it goes to the ABI source and inserts a function pointer in the LLVM IR that it's generating. Unfortunately, that means that there is function-pointer indirection on each call, and whether that matters depends on how long-running the function is. If you mean that your assembly function is 0.1 ns per call or something, then yes, that function-pointer indirection is going to be the bottleneck. If you mean that your assembly function is 1 ΞΌs per call and that's fast, given what it does, then I think it would be alright.
If you need to remove the function-pointer indirection and still run on Awkward Arrays, there are other things we can do, but they're more involved. Ping me in a GitHub Issue or Discussion on https://github.com/scikit-hep/awkward-1.0
-
A note from our sponsor - SaaSHub
www.saashub.com | 6 Nov 2024
Stats
scikit-hep/awkward is an open source project licensed under BSD 3-clause "New" or "Revised" License which is an OSI approved license.
The primary programming language of awkward is Python.