Building a great tech team takes more than a paycheck. Zero payroll costs, get AI-driven insights to retain best talent, and delight them with amazing local benefits. 100% free and compliant. Learn more →
LightGBM Alternatives
Similar projects and alternatives to LightGBM
-
-
H2O
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.
-
InfluxDB
Collect and Analyze Billions of Data Points in Real Time. Manage all types of time series data in a single, purpose-built database. Run at any scale in any environment in the cloud, on-premises, or at the edge.
-
amazon-sagemaker-examples
Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.
-
GPBoost
Combining tree-boosting with Gaussian process and mixed effects models
-
mljar-supervised
Python package for AutoML on Tabular Data with Feature Engineering, Hyper-Parameters Tuning, Explanations and Automatic Documentation
-
yggdrasil-decision-forests
A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.
-
xgboost
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
-
Onboard AI
Learn any GitHub repo in 59 seconds. Onboard AI learns any GitHub repo in minutes and lets you chat with it to locate functionality, understand different parts, and generate new code. Use it for free at www.getonboard.dev.
-
decision-tree-classifier
Decision Tree Classifier and Boosted Random Forest
-
catboost
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
-
-
-
-
flamegraph
Easy flamegraphs for Rust projects and everything else, without Perl or pipes <3 (by flamegraph-rs)
-
tangram
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.
-
cargo-asm
cargo subcommand showing the assembly or llvm-ir generated for Rust code
-
-
nix-articles
Some articles about getting started with Nix programming & configuration
-
-
-
SonarCloud
Analyze your C and C++ projects with just one click.. SonarCloud, a cloud-based static analysis tool for your CI/CD workflows, offers a one-click automatic analysis of C and C++ projects hosted on GitHub. Zero configuration and free for open-source projects! Analyze free.
LightGBM reviews and mentions
-
SIRUS.jl: Interpretable Machine Learning via Rule Extraction
SIRUS.jl is a pure Julia implementation of the SIRUS algorithm by Bénard et al. (2021). The algorithm is a rule-based machine learning model meaning that it is fully interpretable. The algorithm does this by firstly fitting a random forests and then converting this forest to rules. Furthermore, the algorithm is stable and achieves a predictive performance that is comparable to LightGBM, a state-of-the-art gradient boosting model created by Microsoft. Interpretability, stability, and predictive performance are described in more detail below.
-
What's New with AWS: Amazon SageMaker built-in algorithms now provides four new Tabular Data Modeling Algorithms
LightGBM is a popular and high-performance open-source implementation of the Gradient Boosting Decision Tree (GBDT). To learn how to use this algorithm, please see example notebooks for Classification and Regression.
-
Search YouTube from the terminal written in python
Microsoft lightGBM. https://github.com/microsoft/LightGBM
-
LightGBM VS CXXGraph - a user suggested alternative
2 projects | 28 Feb 2022
-
Writing the fastest GBDT libary in Rust
Here are our benchmarks on training time comparing Tangram's Gradient Boosted Decision Tree Library to LightGBM, XGBoost, CatBoost, and sklearn.
-
Workstation Management With Nix Flakes: Build a Cmake C++ Package
{ inputs = { nixpkgs = { url = "github:nixos/nixpkgs/nixos-unstable"; }; flake-utils = { url = "github:numtide/flake-utils"; }; }; outputs = { nixpkgs, flake-utils, ... }: flake-utils.lib.eachDefaultSystem (system: let pkgs = import nixpkgs { inherit system; }; lightgbm-cli = (with pkgs; stdenv.mkDerivation { pname = "lightgbm-cli"; version = "3.3.1"; src = fetchgit { url = "https://github.com/microsoft/LightGBM"; rev = "v3.3.1"; sha256 = "pBrsey0RpxxvlwSKrOJEBQp7Hd9Yzr5w5OdUuyFpgF8="; fetchSubmodules = true; }; nativeBuildInputs = [ clang cmake ]; buildPhase = "make -j $NIX_BUILD_CORES"; installPhase = '' mkdir -p $out/bin mv $TMP/LightGBM/lightgbm $out/bin ''; } ); in rec { defaultApp = flake-utils.lib.mkApp { drv = defaultPackage; }; defaultPackage = lightgbm-cli; devShell = pkgs.mkShell { buildInputs = with pkgs; [ lightgbm-cli ]; }; } ); }
-
Is it possible to clean memory after using a package that has a memory leak in my python script?
I'm working on the AutoML python package (Github repo). In my package, I'm using many different algorithms. One of the algorithms is LightGBM. The algorithm after the training doesn't release the memory, even if del is called and gc.collect() after. I created the issue on LightGBM GitHub -> link. Because of this leak, memory consumption is growing very fast during algorithm training.
-
A note from our sponsor - Revelo Payroll
try.revelo.com | 3 Oct 2023
Stats
Microsoft/LightGBM is an open source project licensed under MIT License which is an OSI approved license.
The primary programming language of LightGBM is C++.