sqlfluff VS streamlit

Compare sqlfluff vs streamlit and see what are their differences.

sqlfluff

A modular SQL linter and auto-formatter with support for multiple dialects and templated code. (by sqlfluff)
Our great sponsors
  • InfluxDB - Access the most powerful time series database as a service
  • Sonar - Write Clean Python Code. Always.
  • SaaSHub - Software Alternatives and Reviews
sqlfluff streamlit
31 197
5,771 23,311
3.8% 4.2%
9.4 9.8
4 days ago 5 days ago
Python Python
MIT License Apache License 2.0
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

sqlfluff

Posts with mentions or reviews of sqlfluff. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-01-31.

streamlit

Posts with mentions or reviews of streamlit. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-03-05.
  • Coding with ChatGPT. Is it worth learning Python anymore?
    2 projects | reddit.com/r/learnpython | 5 Mar 2023
    TIL about https://streamlit.io/
  • Need to install OpenAI whisper on streamlit.io. How to run this command?
    3 projects | reddit.com/r/StreamlitOfficial | 24 Feb 2023
    Tried to run it from requirements like this but I got error messages. Can't find anything in the streamlit.io website on how to install this type of file.
  • How to Use ChatGPT in Python API and Run Batch Jobs with UI
    2 projects | reddit.com/r/learnmachinelearning | 21 Feb 2023
    Run the main page by streamlit. you can got to streamlit to check more about streamlit.
  • Python projects with best practices on Github?
    23 projects | reddit.com/r/Python | 14 Feb 2023
    Check Streamlit out. You can use it to provide a nice and simple web interface to your data analysis/ML related projects.
  • R Shiny App Equivalent
    3 projects | reddit.com/r/java | 11 Feb 2023
    The python library I was referring to is https://streamlit.io/
  • Dropshipping Research Tool Demo in Python
    3 projects | dev.to | 9 Feb 2023
    from serpapi import EbaySearch, WalmartSearch import streamlit as st import streamlit.components.v1 as components import pandas as pd import time, os, Levenshtein def get_walmart_results(query: str): params = { 'api_key': os.getenv('SERPAPI_API_KEY'), # https://serpapi.com/manage-api-key 'engine': 'walmart', # search engine 'query': query, # search query } search = WalmartSearch(params) # data extraction on the SerpApi backend results = search.get_dict() # JSON -> Python dict return results.get('organic_results', []) def get_ebay_results(query: str): params = { 'api_key': os.getenv('SERPAPI_API_KEY'), # https://serpapi.com/manage-api-key 'engine': 'ebay', # search engine '_nkw': query, # search query 'ebay_domain': 'ebay.com', # ebay domain } search = EbaySearch(params) # data extraction on the SerpApi backend results = search.get_dict() # JSON -> Python dict return results.get('organic_results', []) def compare_walmart_with_ebay(query: str, number_of_products: int, percentage_of_uniqueness: float): data = [] walmart_results = get_walmart_results(query) for walmart_result in walmart_results[:number_of_products]: ebay_results = get_ebay_results(walmart_result['title']) for ebay_result in ebay_results: if Levenshtein.ratio(walmart_result['title'], ebay_result['title']) < percentage_of_uniqueness: continue walmart_price = walmart_result.get('primary_offer', {}).get('offer_price') ebay_price = ebay_result.get('price', {}).get('extracted') if not ebay_price: ebay_price = ebay_result.get('price', {}).get('from', {}).get('extracted') profit = 0 if walmart_price and ebay_price: profit = round(walmart_price - ebay_price, 2) data.append({ 'Walmart': { 'thumbnail': walmart_result['thumbnail'], 'title': walmart_result['title'], 'link': walmart_result['product_page_url'], 'price': walmart_price }, 'eBay': { 'thumbnail': ebay_result['thumbnail'], 'title': ebay_result['title'], 'link': ebay_result['link'], 'price': ebay_price }, 'Profit': profit }) return data def compare_ebay_with_walmart(query: str, number_of_products: int, percentage_of_uniqueness: float): data = [] ebay_results = get_ebay_results(query) for ebay_result in ebay_results[:number_of_products]: walmart_results = get_walmart_results(ebay_result['title']) for walmart_result in walmart_results: if Levenshtein.ratio(ebay_result['title'], walmart_result['title']) < percentage_of_uniqueness: continue ebay_price = ebay_result.get('price', {}).get('extracted') walmart_price = walmart_result.get('primary_offer', {}).get('offer_price') if not ebay_price: ebay_price = ebay_result.get('price', {}).get('from', {}).get('extracted') profit = 0 if ebay_price and walmart_price: profit = round(ebay_price - walmart_price, 2) data.append({ 'eBay': { 'thumbnail': ebay_result['thumbnail'], 'title': ebay_result['title'], 'link': ebay_result['link'], 'price': ebay_price }, 'Walmart': { 'thumbnail': walmart_result['thumbnail'], 'title': walmart_result['title'], 'link': walmart_result['product_page_url'], 'price': walmart_price }, 'Profit': profit }) return data def create_table(data: list, where_to_sell: str): with open('table_style.css') as file: style = file.read() products = '' for product in data: profit_color = 'lime' if product['Profit'] >= 0 else 'red' if where_to_sell == 'Walmart': products += f''' {product['Walmart']['thumbnail']}" width="50"> {product['Walmart']['link']}" target="_blank">{product['Walmart']['title']} {str(product['Walmart']['price'])}$ {product['eBay']['thumbnail']}" width="50"> {product['eBay']['link']}" target="_blank">{product['eBay']['title']} {str(product['eBay']['price'])}$ {profit_color}">{str(product['Profit'])}$ ''' elif where_to_sell == 'eBay': products += f''' {product['eBay']['thumbnail']}" width="50"> {product['eBay']['link']}" target="_blank">{product['eBay']['title']} {str(product['eBay']['price'])}$ {product['Walmart']['thumbnail']}" width="50"> {product['Walmart']['link']}" target="_blank">{product['Walmart']['title']} {str(product['Walmart']['price'])}$ {profit_color}">{str(product['Profit'])}$ ''' table = f''' {style} {products} {list(data[0].keys())[0]} {list(data[0].keys())[1]} {list(data[0].keys())[2]} ''' return table def save_to_json(data: list): json_file = pd.DataFrame(data=data).to_json(index=False, orient='table') st.download_button( label='Download JSON', file_name='comparison-results.json', mime='application/json', data=json_file, ) def save_to_csv(data: list): csv_file = pd.DataFrame(data=data).to_csv(index=False) st.download_button( label="Download CSV", file_name='comparison-results.csv', mime='text/csv', data=csv_file ) def main(): st.title('πŸ’ΈProduct Comparison') st.markdown(body='This demo compares products from Walmart and eBay to find a profit. SerpApi Demo Project ([repository](https://github.com/chukhraiartur/dropshipping-tool-demo)). Made with [Streamlit](https://streamlit.io/) and [SerpApi](http://serpapi.com/) 🧑') if 'visibility' not in st.session_state: st.session_state.visibility = 'visible' st.session_state.disabled = False SEARCH_QUERY: str = st.text_input( label='Search query', placeholder='Search', help='Multiple search queries is not supported.' ) WHERE_TO_SELL = st.selectbox( label='Where to sell', options=('Walmart', 'eBay'), help='Select the platform where you want to sell products. The program will look for the same products on another site and calculate the profit.' ) NUMBER_OF_PRODUCTS: int = st.slider( label='Number of products to search', min_value=1, max_value=20, value=10, help='Limit the number of products to analyze.' ) PERCENTAGE_OF_UNIQUENESS: int = st.slider( label='Percentage of uniqueness', min_value=1, max_value=100, value=50, help='The percentage of uniqueness is used to compare how similar one title is to another. The higher this parameter, the more accurate the result.' ) SAVE_OPTION = st.selectbox( label='Choose file format to save', options=(None, 'JSON', 'CSV'), help='By default data won\'t be saved. Choose JSON or CSV format if you want to save the results.' ) col1, col2, col3, col4, col5 = st.columns(5) with col3: submit_button_holder = st.empty() submit_search = submit_button_holder.button(label='Compare products') if submit_search and not SEARCH_QUERY: st.error(body='Looks like you click a button without a search query. Please enter a search query πŸ‘†') st.stop() if submit_search and SEARCH_QUERY and WHERE_TO_SELL: with st.spinner(text='Parsing Product Data...'): comparison_results = [] if WHERE_TO_SELL == 'Walmart': comparison_results = compare_walmart_with_ebay(SEARCH_QUERY, NUMBER_OF_PRODUCTS, PERCENTAGE_OF_UNIQUENESS/100) elif WHERE_TO_SELL == 'eBay': comparison_results = compare_ebay_with_walmart(SEARCH_QUERY, NUMBER_OF_PRODUCTS, PERCENTAGE_OF_UNIQUENESS/100) parsing_is_success = st.success('Done parsing πŸŽ‰') time.sleep(1) parsing_is_success.empty() submit_button_holder.empty() comparison_results_header = st.markdown(body='#### Comparison results') if comparison_results: table = create_table(comparison_results, WHERE_TO_SELL) components.html(table, height=len(comparison_results)*62 + 40) time.sleep(1) with col3: start_over_button_holder = st.empty() start_over_button = st.button(label='Start over') # centered button if SAVE_OPTION and comparison_results: with st.spinner(text=f'Saving data to {SAVE_OPTION}...'): if SAVE_OPTION == 'JSON': save_to_json(comparison_results) elif SAVE_OPTION == 'CSV': save_to_csv(comparison_results) saving_is_success = st.success('Done saving πŸŽ‰') time.sleep(1) saving_is_success.empty() submit_button_holder.empty() start_over_info_holder = st.empty() start_over_info_holder.error(body='To rerun the script, click on the "Start over" button, or refresh the page.') if start_over_button: comparison_results_header.empty() start_over_button_holder.empty() start_over_info_holder.empty() if SAVE_OPTION and not comparison_results: comparison_results_header.empty() no_data_holder = st.empty() no_data_holder.error(body='No product found. Click "Start Over" button and try different search query.') if start_over_button: no_data_holder.empty() start_over_button_holder.empty() if SAVE_OPTION is None and comparison_results: start_over_info_holder = st.empty() start_over_info_holder.error(body='To rerun the script, click on the "Start over" button, or refresh the page.') if start_over_button: comparison_results_header.empty() start_over_button_holder.empty() start_over_info_holder.empty() if SAVE_OPTION is None and not comparison_results: comparison_results_header.empty() no_data_holder = st.empty() no_data_holder.error(body='No product found. Click "Start Over" button and try different search query.') if start_over_button: comparison_results_header.empty() no_data_holder.empty() start_over_button_holder.empty() if __name__ == '__main__': main()
  • 4 Streamlit Alternatives for Building Python Data Apps
    3 projects | dev.to | 8 Feb 2023
    Streamlit is a library for turning Python scripts into shareable web applications. Streamlit apps are designed for the data science and machine learning community and make it easy to build dashboards and interactive ML models. What makes Streamlit so popular is its simplicity. Using the Streamlit library is quick and intuitive, which means you can create data apps without needing any web development experience.
  • Could someone suggest a development environment and/or tools I could use? I'm looking for an environment similar to a browser. I plan on using Python to display the results of many calculations that would change, maybe every second or half second. With lots of variables involved. More details below.
    3 projects | reddit.com/r/learnpython | 7 Feb 2023
    Checkout Streamlit. Browser controls, Python code. JS automatically generated. VERY easy to get going. https://streamlit.io/
  • What are you guys using for making GUIs nowadays?
    12 projects | reddit.com/r/Python | 26 Jan 2023
    - For a PoC / localhost / web usage : https://streamlit.io/
    12 projects | reddit.com/r/Python | 26 Jan 2023

What are some alternatives?

When comparing sqlfluff and streamlit you can also consider the following projects:

PyWebIO - Write interactive web app in script way.

gradio - Create UIs for your machine learning model in Python in 3 minutes

dash - Data Apps & Dashboards for Python. No JavaScript Required.

superset - Apache Superset is a Data Visualization and Data Exploration Platform

PySimpleGUI - Launched in 2018. It's 2023 and PySimpleGUI is actively developed & supported. Create complex windows simply. Supports tkinter, Qt, WxPython, Remi (in browser). Create GUI applications trivially with a full set of widgets. Multi-Window applications are also simple. 3.4 to 3.11 supported. 325+ Demo programs & Cookbook for rapid start. Extensive docs

datapane - Build full-stack data analytics apps in Python

fastapi - FastAPI framework, high performance, easy to learn, fast to code, ready for production

vscode-sqlfluff - An extension to use the sqlfluff linter in vscode.

panel - A high-level app and dashboarding solution for Python

wave - Realtime Web Apps and Dashboards for Python and R

react-virtualized - React components for efficiently rendering large lists and tabular data

appsmith - Low code project to build admin panels, internal tools, and dashboards. Integrates with 15+ databases and any API.