rebar VS rust-memchr

Compare rebar vs rust-memchr and see what are their differences.

rebar

A biased barometer for gauging the relative speed of some regex engines on a curated set of tasks. (by BurntSushi)
Our great sponsors
  • InfluxDB - Power Real-Time Data Analytics at Scale
  • WorkOS - The modern identity platform for B2B SaaS
  • SaaSHub - Software Alternatives and Reviews
rebar rust-memchr
22 29
197 758
- -
8.5 7.7
about 1 month ago about 1 month ago
Python Rust
The Unlicense The Unlicense
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

rebar

Posts with mentions or reviews of rebar. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-04-16.
  • Knuth–Morris–Pratt Illustrated
    2 projects | news.ycombinator.com | 16 Apr 2024
    https://github.com/BurntSushi/rebar

    For regex, you can't really distill it down to one single fastest algorithm.

    It's somewhat similar even for substring search. But certainly, the fastest algorithms are going to be the ones that make use of SIMD in some way.

  • Regex character "$" doesn't mean "end-of-string"
    1 project | news.ycombinator.com | 20 Mar 2024
    I'll add two notes to this:

    * Finite automata based regex engines don't necessarily have to be slower than backtracking engines like PCRE. Go's regexp is in practice slower in a lot of cases, but this is more a property of its implementation than its concept. See: https://github.com/BurntSushi/rebar?tab=readme-ov-file#summa... --- Given "sufficient" implementation effort, backtrackers and finite automata engines can both perform very well, with one beating the other in some cases but not in others. It depends.

    * Fun fact is that if you're iterating over all matches in a haystack (e.g., Go's `FindAll` routines), then you're susceptible to O(m * n^2) search time. This applies to all regex engines that implement some kind of leftmost match priority. See https://github.com/BurntSushi/rebar?tab=readme-ov-file#quadr... for a more detailed elaboration on this point.

  • Re2c
    4 projects | news.ycombinator.com | 22 Feb 2024
    They are extremely fast too: https://github.com/BurntSushi/rebar?tab=readme-ov-file#summa...
  • C# Regex engine is now 3rd fastest in the world
    3 projects | news.ycombinator.com | 31 Dec 2023
    I love the flourish of "in the world." I had never thought about it that way. Which makes me think if there are any regex engines that aren't in rebar that could conceivably by competitive with the top engines in rebar. I do maintained a WANTED list of engines[1], but none of them jump out to me except for maybe Nim's engine.

    Of course, there's also the question of whether the benchmarks are representative enough to make such extrapolations. I don't have a good answer for that one. All models are wrong, but, some are useful.

    [1]: https://github.com/BurntSushi/rebar/blob/96c6779b7e1cdd850b8...

  • Ugrep – a more powerful, ultra fast, user-friendly, compatible grep
    27 projects | news.ycombinator.com | 30 Dec 2023
    I'm the author of ripgrep and its regex engine.

    Your claim is true to a first approximation. But greps are line oriented, and that means there are optimizations that can be done that are hard to do in a general regex library.

    If you read my commentary in the ripgrep discussion above, you'll note that it isn't just about the benchmarks themselves being accurate, but the model they represent. Nevertheless, I linked the hypergrep benchmarks not because of Hyperscan, but because they were done by someone who isn't the author of either ripgrep or ugrep.

    As for regex benchmarks, you'll want to check out rebar: https://github.com/BurntSushi/rebar

    You can see my full thoughts around benchmark design and philosophy if you read the rebar documentation. Be warned though, you'll need some time.

    There is a fork of ripgrep with Hyperscan support: https://sr.ht/~pierrenn/ripgrep/

  • Translations of Russ Cox's Thompson NFA C Program to Rust
    3 projects | news.ycombinator.com | 2 Nov 2023
    Before getting to your actual question, it might help to look at a regex benchmark that compares engines (perhaps JITs are not the fastest in all cases!): https://github.com/BurntSushi/rebar

    In particular, the `regex-lite` engine is strictly just the PikeVM without any frills. No prefilters or literal optimizations. No other engines. Just the PikeVM.

    As to your question, the PikeVM is, essentially, an NFA simulation. The PikeVM just refers to the layering of capture state on top of the NFA simulation. But you can peel back the capture state and you're still left with a slow NFA simulation. I mention this because you seem to compare the PikeVM with "big graph structures with NFAs/DFAs." But the PikeVM is using a big NFA graph structure.

    At a very high level, the time complexity of a Thompson NFA simulation and a DFA hints strongly at the answer to your question: searching with a Thompson NFA has worst case O(m*n) time while a DFA has worst case O(n) time, where m is proportional to the size of the regex and n is proportional to the size of the haystack. That is, for each character of the haystack, the Thompson NFA is potentially doing up to `m` amount of work. And indeed, in practice, it really does need to do some work for each character.

    A Thompson NFA simulation needs to keep track of every state it is simultaneously in at any given point. And in order to compute the transition function, you need to compute it for every state you're in. The epsilon transitions that are added as part of the Thompson NFA construction (and are, crucially, what make building a Thompson NFA so fast) exacerbate this. So what happens is that you wind up chasing epsilon transitions over and over for each character.

    A DFA pre-computes these epsilon closures during powerset construction. Of course, that takes worst case O(2^m) time, which is why real DFAs aren't really used in general purpose engines. Instead, lazy DFAs are used.

    As for things like V8, they are backtrackers. They don't need to keep track of every state they're simultaneously in because they don't mind taking a very long time to complete some searches. But in practice, this can make them much faster for some inputs.

    Feel free to ask more questions. I'll stop here.

  • Compile time regular expression in C++
    5 projects | news.ycombinator.com | 12 Sep 2023
    I'd love for someone to add this to rebar[1] so that we can get a good sense of how well it does against other general purpose regex engines. It will be a little tricky to add (since the build step will require emitting a C++ program and compiling it), but it should be possible.

    [1]: https://github.com/BurntSushi/rebar

  • Stringzilla: Fastest string sort, search, split, and shuffle using SIMD
    9 projects | news.ycombinator.com | 29 Aug 2023
  • Rust vs. Go in 2023
    9 projects | news.ycombinator.com | 13 Aug 2023
    https://github.com/BurntSushi/rebar#summary-of-search-time-b...

    Further, Go refusing to have macros means that many libraries use reflection instead, which often makes those parts of the Go program perform no better than Python and in some cases worse. Rust can just generate all of that at compile time with macros, and optimize them with LLVM like any other code. Some Go libraries go to enormous lengths to reduce reflection overhead, but that's hard to justify for most things, and hard to maintain even once done. The legendary https://github.com/segmentio/encoding seems to be abandoned now and progress on Go JSON in general seems to have died with https://github.com/go-json-experiment/json .

    Many people claiming their projects are IO-bound are just assuming that's the case because most of the time is spent in their input reader. If they actually measured they'd see it's not even saturating a 100Mbps link, let alone 1-100Gbps, so by definition it is not IO-bound. Even if they didn't need more throughput than that, they still could have put those cycles to better use or at worst saved energy. Isn't that what people like to say about Go vs Python, that Go saves energy? Sure, but it still burns a lot more energy than it would if it had macros.

    Rust can use state-of-the-art memory allocators like mimalloc, while Go is still stuck on an old fork of tcmalloc, and not just tcmalloc in its original C, but transpiled to Go so it optimizes much less than LLVM would optimize it. (Many people benchmarking them forget to even try substitute allocators in Rust, so they're actually underestimating just how much faster Rust is)

    Finally, even Go Generics have failed to improve performance, and in many cases can make it unimaginably worse through -- I kid you not -- global lock contention hidden behind innocent type assertion syntax: https://planetscale.com/blog/generics-can-make-your-go-code-...

    It's not even close. There are many reasons Go is a lot slower than Rust and many of them are likely to remain forever. Most of them have not seen meaningful progress in a decade or more. The GC has improved, which is great, but that's not even a factor on the Rust side.

  • A Regex Barometer
    1 project | /r/hypeurls | 5 Jul 2023

rust-memchr

Posts with mentions or reviews of rust-memchr. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-12-26.
  • Memchr: Optimized string search routines for Rust
    1 project | news.ycombinator.com | 13 Jan 2024
  • Ask HN: What's the fastest programming language with a large standard library?
    9 projects | news.ycombinator.com | 26 Dec 2023
    That's what the `memchr` crate does. It uses `vshrn` just like in your links. And vpmaxq before even bothering with vshrn: https://github.com/BurntSushi/memchr/blob/c6b885b870b6f1b9bf...
  • Rust-Cache
    1 project | news.ycombinator.com | 4 Dec 2023
    I agree with everything you said, but I don't see how it leads the OP's formulation being silly or wrong or not useful. Here's another example (of my own) where you can pick an upper bound for `n` and base your complexity analysis around it. In this case, we're trying to provide an API guarantee that a search takes O(m+n) time despite wanting to use an O(mn) algorithm in some subset of cases. We can still meet the O(m+n) bound by reasoning that the O(mn) algorithm is only used in a finite set of cases, and thus collapses to O(1) time. Therefore, the O(m+n) time bound is preserved. And this isn't a trick either. That really is the scaling behavior of the implementation. See: https://github.com/BurntSushi/memchr/blob/ce7b8e606410f6c81a...

    > If an algorithm is defined as being unscalable (fixed input), what sense does it make to describe that it scales constantly with input size?

    I'll answer your question with another: in what cases does it make sense to describe the scaling behavior of algorithm with O(1)?

  • Rust memchr adds aarch64 SIMD with impressive speedups
    1 project | news.ycombinator.com | 29 Aug 2023
  • Stringzilla: Fastest string sort, search, split, and shuffle using SIMD
    9 projects | news.ycombinator.com | 29 Aug 2023
    Copying my feedback from reddit[1], where I discussed it in the context of the `memchr` crate.[2]

    I took a quick look at your library implementation and have some notes:

    * It doesn't appear to query CPUID, so I imagine the only way it uses AVX2 on x86-64 is if the user compiles with that feature enabled explicitly. (Or uses something like [`x86-64-v3`](https://en.wikipedia.org/wiki/X86-64#Microarchitecture_level...).) The `memchr` crate doesn't need that. It will use AVX2 even if the program isn't compiled with AVX2 enabled so long as the current CPU supports it.

    * Your substring routines have multiplicative worst case (that is, `O(m * n)`) running time. The `memchr` crate only uses SIMD for substring search for smallish needles. Otherwise it flips over to Two-Way with a SIMD prefilter. You'll be fine for short needles, but things could go very very badly for longer needles.

    * It seems quite likely that your [confirmation step](https://github.com/ashvardanian/Stringzilla/blob/fab854dc4fd...) is going to absolutely kill performance for even semi-frequently occurring candidates. The [`memchr` crate utilizes information from the vector step to limit where and when it calls `memcmp`](https://github.com/BurntSushi/memchr/blob/46620054ff25b16d22...). Your code might do well in cases where matches are very rare. I took a quick peek at your benchmarks and don't see anything that obviously stresses this particular case. For substring search, the `memchr` crate uses a variant of the "[generic SIMD](http://0x80.pl/articles/simd-strfind.html#first-and-last)" algorithm. Basically, it takes two bytes from the needle, looks for positions where those occur and then attempts to check whether that position corresponds to a match. It looks like your technique uses the first 4 bytes. I suspect that might be overkill. (I did try using 3 bytes from the needle and found that it was a bit slower in some cases.) That is, two bytes is usually enough predictive power to lower the false positive rate enough. Of course, one can write pathological inputs that cause either one to do better than the other. (The `memchr` crat benchmark suite has a [collection of pathological inputs](https://github.com/BurntSushi/memchr/blob/46620054ff25b16d22...).)

    It would actually be possible to hook Stringzilla up to `memchr`'s benchmark suite if you were interested. :-)

    [1]: https://old.reddit.com/r/rust/comments/163ph8r/memchr_26_now...

    [2]: https://github.com/BurntSushi/memchr

  • Ripgrep now twice as fast on Apple Silicon with new aarch64 SIMD implementations
    1 project | news.ycombinator.com | 28 Aug 2023
  • Regex Engine Internals as a Library
    5 projects | news.ycombinator.com | 5 Jul 2023
    The current PR for ARM SIMD[1] uses a different instruction mix to achieve the same goals as movemask. I tested the PR and it has a significant speedup over the non-vectorized version.

    [1]https://github.com/BurntSushi/memchr/pull/114

  • Sneller Regex vs Ripgrep
    3 projects | news.ycombinator.com | 18 May 2023
    And that is the primary reason why ripgrep doesn't bother with AVX-512. Not because of some lack of skill as this blog suggests:

    > Additionally, ripgrep uses AVX2 and does not take advantage of AVX-512 instruction sets, but this can be forgiven given the specialized skills required for handcrafting for SkylakeX and Icelake/Zen4 processors.

    Namely, I tried running sneller on my CPU, which is a pretty recent i9-12900K, and not even it supports AVX-512. That's because Intel has been dropping support for AVX-512 from its more recent consumer grade CPUs. ripgrep is running far more frequently on consumer grade CPUs, so supporting AVX-512 is probably not particularly advantageous. At least, it's not obvious to me that it's worth doing. And certainly, the skill argument isn't entirely wrong. I'd have to invest developer time to make it work.

    I think there are two other things worth highlighting from this blog.

    First is that sneller seems to do quite well with compressed data. This is definitely not ripgrep's strong suit. When you use ripgrep's -z/--search-zip flag, all it's doing is shelling out to your gzip/xz/whatever executable to do the decompression work, which is then streamed into ripgrep for searching. So if your search speed tanks when using -z/--search-zip, it's likely because your decompression tools are slow, not because of ripgrep. But it's a fair comparison from sneller's perspective, because it seems to integrate the two.

    Second is the issue of multi-threaded search. In ripgrep, the fundamental unit of work is "search a file." ripgrep has no support for more granular parallelism. That is, if you give it one file, it's limited to doing a single threaded search. ripgrep could do more granular parallelism, but it hasn't been obviously worth it to me. If most searches are on a directory tree, then parallelizing at the level of each file is almost certainly good enough. Making ripgrep's parallelism more fine grained is a fair bit of work too, and there would be a lot of fiddly stuff to get right. If I could run sneller easily, I'd probably try to see how it does in a more varied workload than what is presented in this blog. :-)

    And finally some corrections:

    > However, when using a single thread, ripgrep appears to be slightly faster.

    Not just slightly faster, over 2x faster!

    The single threaded results for Regex2 and Regex3 for Sneller are quite nice! I'd be interested in hearing more about what you're doing in the Regex2 case, since Sneller and ripgrep are about on par with the Regex3 case. Maybe a fail fast optimization?

    > The reason for this is that ripgrep uses the Boyer-Moore string search algorithm, which is a pattern matching algorithm that is often used for searching for substrings within larger strings. It is particularly efficient when the pattern being searched for is relatively long and the alphabet of characters being searched over is relatively small. Sneller does not use this substring search algorithm and as a result is slower than ripgrep with substrings. However, when long substrings are not present, Sneller outperforms ripgrep.

    ripgrep has never used Boyer-Moore. (Okay, some years ago, ripgrep could use Boyer-Moore in certain niche cases. But that hasn't been the case for a while and it was never the thing most commonly used). What ripgrep uses today is succinctly described here: https://github.com/BurntSushi/memchr#algorithms-used (But it has always eschewed algorithms like Boyer-Moore in favor of more heuristic-y approaches based on a background frequency distribution of bytes.)

    I think I would also contest the claim that "long substrings" are the key here. ripgrep is plenty fast with short substrings too. You're correct that if you have no literals then ripgrep will get slower because it has to fall back to the regex engine. But I'd like to see more robust benchmarks there. Your Regex2 and Regex3 benchmarks raise more questions than it answers. :-)

    > Although the resulting .dot and .svg files may be somewhat clunky, we can still observe from the graph that the number of nodes and edges are small enough to use the branchless IceLake implementation. In this particular case, we only need 8 bits to encode the number of nodes and the number of distinct edges, enabling the tool to use (what we call) the 8-bit DFA implementation. For more details on how this works, see our post on regex implementations.

    So this is talking about the DFA graph for the regex `Sherlock [A-Z]\w+`. It's important to point out that, in ripgrep, `\w` is Unicode aware by default. Which makes it absolutely enormous. So I think the state graph you linked is probably only for the ASCII version of that regex.

    Indeed, reading your regex blog[1], it perhaps looks like a lot of the tricks you use won't work for Unicode, because Unicode tends to blow up finite automata.

    If I could run Sneller, I'd probably try to poke it to see what its Unicode support looks like. From a quick glance of the source code, it also looks like you build full DFAs. So I would also try to poke it to see what happens when handed a particularly a not-so-small regex. (Building a DFA can take quite some time.)

    Ah okay, I see, you put a max limit on the DFA: https://github.com/SnellerInc/sneller/blob/bb5adec564bf9869d...

    Overall this is a very cool project!

    [1]: https://sneller.io/blog/accelerating-regex-using-avx-512/

  • SIMD with Zig
    6 projects | news.ycombinator.com | 1 May 2023
    Indeed. This is how ripgrep works. It's compiled for just plain `x86_64`, but it looks for whether things like AVX2 are enabled. And if so, uses vector algorithms for substring and multi-substring search. The nice thing about dealing with strings is that the "coarse" requirement is already somewhat natural to the domain.

    But, this functionality is absolutely critical. It doesn't even have to be automatic. Just the ability to compile functions with certain ISA extensions enabled, and then only call them when the requisite CPU features are enabled is enough.

    In a nutshell: https://github.com/BurntSushi/memchr/blob/8037d11b4357b0f07b...

  • Tree Borrows - A new aliasing model for Rust
    6 projects | /r/rust | 28 Mar 2023
    /u/nvanille Excellent work. Evaluating whether this all makes sense is very much above my pay-grade, but I'm all in favor of making it harder to shoot yourself in the foot with unsafe. This actually happened with the memchr crate, if you're interested in those details.

What are some alternatives?

When comparing rebar and rust-memchr you can also consider the following projects:

Rebar3 - Erlang build tool that makes it easy to compile and test Erlang applications and releases.

thefuck - Magnificent app which corrects your previous console command.

cl-ppcre - Common Lisp regular expression library

htop - htop - an interactive process viewer

hypergrep - Recursively search directories for a regex pattern

duf - Disk Usage/Free Utility - a better 'df' alternative

StringZilla - Up to 10x faster strings for C, C++, Python, Rust, and Swift, leveraging SWAR and SIMD on Arm Neon and x86 AVX2 & AVX-512-capable chips to accelerate search, sort, edit distances, alignment scores, etc 🦖

bottom - Yet another cross-platform graphical process/system monitor.

moar - Moar is a pager. It's designed to just do the right thing without any configuration.

fzf - :cherry_blossom: A command-line fuzzy finder

bat - A cat(1) clone with wings.

regex - An implementation of regular expressions for Rust. This implementation uses finite automata and guarantees linear time matching on all inputs.