ort
langchainjs


ort | langchainjs | |
---|---|---|
7 | 16 | |
1,119 | 13,456 | |
10.8% | 3.3% | |
9.5 | 9.9 | |
6 days ago | 6 days ago | |
Rust | TypeScript | |
Apache License 2.0 | MIT License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
ort
-
AI Inference now available in Supabase Edge Functions
To solve this, we built a native extension in Edge Runtime that enables using ONNX runtime via the Rust interface. This was made possible thanks to an excellent Rust wrapper called Ort:
-
AI Inference Now Available in Supabase Edge Functions
hey hn, supabase ceo here
As the post points out, this comes in 2 parts:
1. Embeddings models for RAG workloads (specifically pgvector). Available today.
2. Large Language Models for GenAI workloads. This will be progressively rolled out as we get our hands on more GPUs.
We've always had a focus on architectures that can run anywhere (especially important for local dev and self-hosting). In that light, we've found that the Ollama[0] tooling is really unbeatable. I heard one of our engineers explain it like "docker for models" which I think is apt.
To support models that work best with GPUs, we're running them with Fly GPUs - pretty much this: https://fly.io/blog/scaling-llm-ollama (and then we stitch a native API around it). The plan is that you will be able to "BYO" model server and point the Edge Runtime towards it using simple env vars / config.
We've also made improvements for CPU models. We built a native extension in Edge Runtime that enables using ONNX runtime via the Rust interface. This was made possible thanks to an excellent Rust wrapper, Ort[1]. We have the models stored on disk, so there is no downloading, cold-boot, etc.
The thing I most like about this set up is that you can now use Edge Functions like background workers for your Postgres database, offloading heavy compute for generating embeddings. For example, you can trigger the worker when a user inserts some text, and then the worker will asynchronously create the embedding and store it back into your database.
I'll be around if there are any questions.
[0] ollama.com
[1] Ort: https://github.com/pykeio/ort
-
Moving from Typescript and Langchain to Rust and Loops
In the quest for more efficient solutions, the ONNX runtime emerged as a beacon of performance. The decision to transition from Typescript to Rust was an unconventional yet pivotal one. Driven by Rust's robust parallel processing capabilities using Rayon and seamless integration with ONNX through the ort crate, Repo-Query unlocked a realm of unparalleled efficiency. The result? A transformation from sluggish processing to, I have to say it, blazing-fast performance.
-
How to create YOLOv8-based object detection web service using Python, Julia, Node.js, JavaScript, Go and Rust
ort - ONNX runtime library.
-
Do you use Rust in your professional career?
Our main model in Rust is a deep neural network, using ONNX via the ort rust bindings. The application is some particular applications of process automation.
-
onnxruntime
You could try ort https://github.com/pykeio/ort It looks like it's in active development and supports GPU inference
-
Deep Learning in Rust: Burn 0.4.0 released and plans for 2023
I would't try to distribute your ml models with the typical frameworks, especially not with python. Have you looked in to ONNX?For example: https://github.com/pykeio/ort
langchainjs
-
Top 8 Most Popular Open-Source Next.js Boilerplates/Starter
AI: Langchainjs
- 【TypeScript】Displaying ChatGPT-like Streaming Responses with trpc in React
-
Getting started with Valkey using JavaScript
The current implementation uses the node-redis client, but I wanted to try out iovalkey client. I am not a JS/TS expert, but it was simple enough to port the existing implementation.You can refer to the code on GitHub
-
Learning the Basics of Large Language Model (LLM) Applications with LangChainJS
import { GithubRepoLoader } from "langchain/document_loaders/web/github"; import ignore from "ignore"; const loader = new GithubRepoLoader( "https://github.com/langchain-ai/langchainjs", { recursive: false, ignorePaths: ["*.md", "yarn.lock"] } ); const docs = await loader.load(); console.log(docs.slice(0, 3));
-
On the unpredictable nature of LLM output and type safety in LangChain TS
*** all code examples are using LangChain TS on the main branch on September 22nd, 2023 (roughly version 0.0.153).
-
Moving from Typescript and Langchain to Rust and Loops
At the time of the prototype's development, the Langchain GitHub loader sent one request per file to fetch the repository sequentially, leading to prolonged download times. In our case about 2 minutes for the insights.opensauced.pizza repository. This issue was later resolved in hwchase17/langchainjs#2224, enabling parallel requests for faster retrieval.
-
ai-utils.js VS langchainjs - a user suggested alternative
2 projects | 26 Jul 2023
Another llm orchestration library for js/ts
-
Ai personal assistant with long term memory?
You will probably need to create a custom agent with custom tools to do what you want to do. Look at Langchain (seems like there is an open PR for Google calendar tools here: https://github.com/hwchase17/langchainjs/pull/1777). There are a lot of great integration examples on their website (including for vectorDB memory https://python.langchain.com/docs/modules/memory/how_to/vectorstore_retriever_memory)
-
Building A Chat GPT Clone With Strapi Open AI and LangChain with Next JS 13 Frontend
You can checkout there docs (here)[https://js.langchain.com/docs/].
- Show HN: Python package for interfacing with ChatGPT with minimized complexity
What are some alternatives?
onnxruntime-php - Run ONNX models in PHP
instructor - structured outputs for llms
onnxruntime-rs - Rust wrapper for Microsoft's ONNX Runtime (version 1.8)
modelfusion - The TypeScript library for building AI applications.
yolov8_onnx_go - YOLOv8 Inference using Go
camel - 🐫 CAMEL: Finding the Scaling Law of Agents. The first and the best multi-agent framework. https://www.camel-ai.org
yolov8_onnx_julia - YOLOv8 inference using Julia
chatgpt-localfiles - Make local files accessible to ChatGPT
FaceAiSharp - State-of-the-art face detection and face recognition for .NET.
Converter - Typescript to Scala.js converter
yolov8_onnx_javascript - YOLOv8 inference using Javascript
app - 🍕 Insights into your entire open source ecosystem.

