NLTK VS bert

Compare NLTK vs bert and see what are their differences.

CodeRabbit: AI Code Reviews for Developers
Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
coderabbit.ai
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
NLTK bert
68 51
13,683 38,348
0.9% 0.5%
9.3 0.0
about 1 month ago 5 months ago
Python Python
Apache License 2.0 Apache License 2.0
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

NLTK

Posts with mentions or reviews of NLTK. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-08-13.

bert

Posts with mentions or reviews of bert. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2023-12-10.
  • OpenAI Will Terminate Its Services in China: A Comprehensive Analysis
    1 project | dev.to | 25 Jun 2024
    BERT
  • Zero Shot Text Classification Under the hood
    1 project | dev.to | 5 May 2024
    In 2019, a new language representation called BERT (Bedirectional Encoder Representation from Transformers) was introduced. The main idea behind this paradigm is to first pre-train a language model using a massive amount of unlabeled data then fine-tune all the parameters using labeled data from the downstream tasks. This allows the model to generalize well to different NLP tasks. Moreover, it has been shown that this language representation model can be used to solve downstream tasks without being explicitly trained on, e.g classify a text without training phase.
  • OpenAI – Application for US trademark "GPT" has failed
    1 project | news.ycombinator.com | 15 Feb 2024
    task-specific parameters, and is trained on the downstream tasks by simply fine-tuning all pre-trained parameters.

    [0] https://arxiv.org/abs/1810.04805

  • Integrate LLM Frameworks
    5 projects | dev.to | 10 Dec 2023
    The release of BERT in 2018 kicked off the language model revolution. The Transformers architecture succeeded RNNs and LSTMs to become the architecture of choice. Unbelievable progress was made in a number of areas: summarization, translation, text classification, entity classification and more. 2023 tooks things to another level with the rise of large language models (LLMs). Models with billions of parameters showed an amazing ability to generate coherent dialogue.
  • Embeddings: What they are and why they matter
    9 projects | news.ycombinator.com | 24 Oct 2023
    The general idea is that you have a particular task & dataset, and you optimize these vectors to maximize that task. So the properties of these vectors - what information is retained and what is left out during the 'compression' - are effectively determined by that task.

    In general, the core task for the various "LLM tools" involves prediction of a hidden word, trained on very large quantities of real text - thus also mirroring whatever structure (linguistic, syntactic, semantic, factual, social bias, etc) exists there.

    If you want to see how the sausage is made and look at the actual algorithms, then the key two approaches to read up on would probably be Mikolov's word2vec (https://arxiv.org/abs/1301.3781) with the CBOW (Continuous Bag of Words) and Continuous Skip-Gram Model, which are based on relatively simple math optimization, and then on the BERT (https://arxiv.org/abs/1810.04805) structure which does a conceptually similar thing but with a large neural network that can learn more from the same data. For both of them, you can either read the original papers or look up blog posts or videos that explain them, different people have different preferences on how readable academic papers are.

  • Ernie, China's ChatGPT, Cracks Under Pressure
    1 project | news.ycombinator.com | 7 Sep 2023
  • Ask HN: How to Break into AI Engineering
    2 projects | news.ycombinator.com | 22 Jun 2023
    Could you post a link to "the BERT paper"? I've read some, but would be interested reading anything that anyone considered definitive :) Is it this one? "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" :https://arxiv.org/abs/1810.04805
  • How to leverage the state-of-the-art NLP models in Rust
    3 projects | /r/infinilabs | 7 Jun 2023
    Rust crate rust_bert implementation of the BERT language model (https://arxiv.org/abs/1810.04805 Devlin, Chang, Lee, Toutanova, 2018). The base model is implemented in the bert_model::BertModel struct. Several language model heads have also been implemented, including:
  • Notes on training BERT from scratch on an 8GB consumer GPU
    1 project | news.ycombinator.com | 2 Jun 2023
    The achievement of training a BERT model to 90% of the GLUE score on a single GPU in ~100 hours is indeed impressive. As for the original BERT pretraining run, the paper [1] mentions that the pretraining took 4 days on 16 TPU chips for the BERT-Base model and 4 days on 64 TPU chips for the BERT-Large model.

    Regarding the translation of these techniques to the pretraining phase for a GPT model, it is possible that some of the optimizations and techniques used for BERT could be applied to GPT as well. However, the specific architecture and training objectives of GPT might require different approaches or additional optimizations.

    As for the SOPHIA optimizer, it is designed to improve the training of deep learning models by adaptively adjusting the learning rate and momentum. According to the paper [2], SOPHIA has shown promising results in various deep learning tasks. It is possible that the SOPHIA optimizer could help improve the training of BERT and GPT models, but further research and experimentation would be needed to confirm its effectiveness in these specific cases.

    [1] https://arxiv.org/abs/1810.04805

  • List of AI-Models
    14 projects | /r/GPT_do_dah | 16 May 2023
    Click to Learn more...

What are some alternatives?

When comparing NLTK and bert you can also consider the following projects:

spaCy - πŸ’« Industrial-strength Natural Language Processing (NLP) in Python

bert-sklearn - a sklearn wrapper for Google's BERT model

TextBlob - Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

pysimilar - A python library for computing the similarity between two strings (text) based on cosine similarity

Stanza - Stanford NLP Python library for tokenization, sentence segmentation, NER, and parsing of many human languages

transformers - πŸ€— Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

polyglot - Multilingual text (NLP) processing toolkit

NL_Parser_using_Spacy - NLP parser using NER and TDD

PyTorch-NLP - Basic Utilities for PyTorch Natural Language Processing (NLP)

cakechat - CakeChat: Emotional Generative Dialog System

Jieba - η»“ε·΄δΈ­ζ–‡εˆ†θ―

word2vec-slim - word2vec Google News model slimmed down to 300k English words

CodeRabbit: AI Code Reviews for Developers
Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
coderabbit.ai
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured

Did you konow that Python is
the 2nd most popular programming language
based on number of metions?