cheatsheets
Pandas
cheatsheets | Pandas | |
---|---|---|
126 | 425 | |
7,468 | 45,442 | |
0.4% | 1.0% | |
5.3 | 9.9 | |
11 days ago | 5 days ago | |
Python | Python | |
BSD 2-clause "Simplified" License | BSD 3-clause "New" or "Revised" License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
cheatsheets
-
Mastering Matplotlib: A Step-by-Step Tutorial for Beginners
Matplotlib - A Python 2D plotting library.
-
How to retrieve and analyze crypto order book data using Python and a cryptocurrency API
Data visualization: utilizing Python's Matplotlib for visualizing order book information.
- Matplotlib
- Ask HN: What plotting tools should I invest in learning?
- Help with an array
-
Getting visual studio code to work with imported library
Name: matplotlib Version: 3.7.1 Summary: Python plotting package Home-page: https://matplotlib.org Author: John D. Hunter, Michael Droettboom Author-email: [email protected] License: PSFLocation: /home/huinker/.local/lib/python3.10/site-packages
-
PSA: You don't need fancy stuff to do good work.
Python's pandas, NumPy, and SciPy libraries offer powerful functionality for data manipulation, while matplotlib, seaborn, and plotly provide versatile tools for creating visualizations. Similarly, in R, you can use dplyr, tidyverse, and data.table for data manipulation, and ggplot2, lattice, and shiny for visualization. These packages enable you to create insightful visualizations and perform statistical analyses without relying on expensive or proprietary software.
-
What else should I complete before applying for a data analyst role?
programming language: basic python, pandas, matplotlib -- you'll probably do these in school, but if not https://cs50.harvard.edu/python/2022/ https://matplotlib.org/
-
[OC] Analyzing 15,963 Job Listings to Uncover the Top Skills for Data Analysts (update)
Analysis was done in Jupyter Notebook with Python 3.10, Pandas, Matplotlib, wordcloud and Mercury framework.
-
[OC] Data Analyst Skills in need based on 15,963 job listings
Analysis was done in Jupyter Notebook with Python 3.10 kernel, Pandas, Matplotlib, wordcloud and Mercury framework to share notebook as a web application with widgets and code hidden. Gif created in Canva.
Pandas
-
Top Programming Languages for AI Development in 2025
Libraries for data science and deep learning that are always changing
-
How to import sample data into a Python notebook on watsonx.ai and other questions…
# Read the content of nda.txt try: import os, types import pandas as pd from botocore.client import Config import ibm_boto3 def __iter__(self): return 0 # @hidden_cell # The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials. # You might want to remove those credentials before you share the notebook. cos_client = ibm_boto3.client(service_name='s3', ibm_api_key_id='api-generated', ibm_auth_endpoint="https://iam.cloud.ibm.com/identity/token", config=Config(signature_version='oauth'), endpoint_url='https://s3.direct.us-south.cloud-object-storage.appdomain.cloud') bucket = 'your-bucket-referenced-here' object_key = 'nda__da__crxq8b2hmy.txt' # load data of type "text/plain" into a botocore.response.StreamingBody object. # Please read the documentation of ibm_boto3 and pandas to learn more about the possibilities to load the data. # ibm_boto3 documentation: https://ibm.github.io/ibm-cos-sdk-python/ # pandas documentation: http://pandas.pydata.org/ streaming_body_1 = cos_client.get_object(Bucket=bucket, Key=object_key)['Body'] with open("nda.txt", "r") as f: nda_content = f.read() print("Content of nda.txt has been read.") except FileNotFoundError: print("Error: nda.txt not found in the current directory.") nda_content = "" # Initialize knowledge source content_source = CrewDoclingSource( file_paths=["..."] )
-
How I Hacked Uber’s Hidden API to Download 4379 Rides
As with any web scraping or data processing project, I had to write a fair amount of code to clean this up and shape it into a format I needed for further analysis. I used a combination of Pandas and regular expressions to clean it up (full code here).
-
Show HN: Aiopandas – Async .apply() and .map() for Pandas, Faster API/LLMs Calls
Can this be merged into pandas?
Pandas does not currently install tqdm by default.
pandas-dev/pandas//pyproject.toml [project.optional-dependencies] https://github.com/pandas-dev/pandas/blob/main/pyproject.tom...
Dask solves for various adjacent problems; IDK if pandas, dask, or dask-cudf would be faster with async?
Dask docs > Scheduling > Dask Distributed (local) https://docs.dask.org/en/stable/scheduling.html#dask-distrib... :
> Asynchronous Futures API
Dask docs > Deploy Dask Clusters; local multiprocessing poll, k8s (docker desktop, podman-desktop,), public and private clouds, dask-jobqueue (SLURM,), dask-mpi:
-
We Are Destroying Software
They are when the only reason they are flagged as security updates is because some a single group deems a very rare, obscure edge case as a HIGH severity vuln when in practice it rarely is => this leads to having to upgrade a minor version of a library that ends up causing breaking changes.
This is the recent thread I'm down. Pandas 2.2 broke SQLalchemy backwards compatibility: https://stackoverflow.com/questions/38332787/pandas-to-sql-t... + https://github.com/pandas-dev/pandas/issues/57049#issuecomme...
-
Must-Know 2025 Developer’s Roadmap and Key Programming Trends
Python’s Growth in Data Work and AI: Python continues to lead because of its easy-to-read style and the huge number of libraries available for tasks from data work to artificial intelligence. Tools like TensorFlow and PyTorch make it a must-have. Whether you’re experienced or just starting, Python’s clear style makes it a good choice for diving into machine learning. Actionable Tip: If you’re new to Python, try projects that combine data with everyday problems. For example, build a simple recommendation system using Pandas and scikit-learn.
-
Sample Super Store Analysis Using Python & Pandas
This tutorial provides a concise and foundational guide to exploring a dataset, specifically the Sample SuperStore dataset. This dataset, which appears to originate from a fictional e-commerce or online marketplace company's annual sales data, serves as an excellent example for learning and how to work with real-world data. The dataset includes a variety of data types, which demonstrate the full range of capabilities that the Pandas library, written in Python can offer.
-
Bullish on AI infrastructure, bearish on AI developer frameworks
Data preprocessing and manipulation: Libraries like Pandas solve for the messy, real-world challenge of efficiently wrangling and cleaning large datasets. Without it, you'd be reinventing functionality for basic tasks like merging, filtering, or aggregating data.
-
Building an AI-powered Financial Data Analyzer with NodeJS, Python, SvelteKit, and TailwindCSS - Part 0
The AI Service will be built using aiohttp (asynchronous Python web server) and integrates PyTorch, Hugging Face Transformers, numpy, pandas, and scikit-learn for financial data analysis.
-
Building a Sarcasm Detection System with LSTM and GloVe: A Complete Guide
Pandas
What are some alternatives?
finplot - Performant and effortless finance plotting for Python
Airflow - Apache Airflow - A platform to programmatically author, schedule, and monitor workflows
chat-replay-downloader - A simple tool used to retrieve chat messages from livestreams, videos, clips and past broadcasts. No authentication needed!
orange - 🍊 :bar_chart: :bulb: Orange: Interactive data analysis
manim - A community-maintained Python framework for creating mathematical animations.
Cubes - [NOT MAINTAINED] Light-weight Python OLAP framework for multi-dimensional data analysis