Theano
neptune-client
Theano | neptune-client | |
---|---|---|
- | 26 | |
9,913 | 609 | |
0.0% | 2.0% | |
5.0 | 8.1 | |
about 1 year ago | 17 days ago | |
Python | Python | |
GNU General Public License v3.0 or later | Apache License 2.0 |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
Theano
We haven't tracked posts mentioning Theano yet.
Tracking mentions began in Dec 2020.
neptune-client
-
Understanding the MLOps Lifecycle
Some tools for model validation include Neptune AI, Kolena, and Censius.
-
A step-by-step guide to building an MLOps pipeline
Experiment tracking tools like MLflow, Weights and Biases, and Neptune.ai provide a pipeline that automatically tracks meta-data and artifacts generated from each experiment you run. Although they have varying features and functionalities, experiment tracking tools provide a systematic structure that handles the iterative model development approach.
-
Show HN: A gallery of dev tool marketing examples
Hi I am Jakub. I run marketing at a dev tool startup https://neptune.ai/ and I share learnings on dev tool marketing on my blog https://www.developermarkepear.com/.
Whenever I'd start a new marketing project I found myself going over a list of 20+ companies I knew could have done something well to “copy-paste” their approach as a baseline (think Tailscale, DigitalOCean, Vercel, Algolia, CircleCi, Supabase, Posthog, Auth0).
So past year and a half, I’ve been screenshoting examples of how companies that are good at dev marketing do things like pricing, landing page design, ads, videos, blog conversion ideas. And for each example I added a note as to why I thought it was good.
Now, it is ~140 examples organized by tags so you can browse all or get stuff for a particular topic.
Hope it is helpful to some dev tool founders and marketers in here.
wdyt?
Also, I am always looking for new companies/marketing ideas to add to this, so if you’d like to share good examples I’d really appreciate it.
-
How to structure/manage a machine learning experiment? (medical imaging)
There are a lot of tools out there for experiment tracking (eg neptune.ai), but I'm really not sure whether that sort of thing is over the top for what I need to do.
-
How to grow a developer blog to 3M annual visitors? with Jakub Czakon (Neptune.ai)
Welcome to another episode of The Developer-led Podcast, where we dive into the strategies modern companies use to build and grow their developer tools. In this exciting episode, we're joined by Jakub Czakon, the CMO at Neptune.ai, a startup that assists developers in efficiently managing their machine-learning model data. Jakub is renowned not only for his role at Neptune.ai but also for his developer marketing endeavors, including the influential newsletter Developer Markepear and a thriving developer marketing Slack community.
-
[D] Is there any all in one deep learning platform or software
tbh I have done a pretty good search on this topic, I couldn't find any. I thought maybe community could help me find one, if people like you (who works at neptune.ai) have the same opinion then it is what it is :). anyway thank you for the suggestions that you gave, probably gonna use that.
-
New Data Scientist, want to get into MLOps, where to start?
To get started with MLOps, you will need to have some foundational skills in Python, SQL, mathematics, and machine learning algorithms and libraries. You will also need to learn about databases, model deployment, continuous integration, continuous delivery, continuous monitoring, and other best practices of MLOps. You can find some useful resources for each of these topics in the following blogs on neptune.ai (disclosure: I work for Neptune):
-
Does a fully sentient (Or at least as sentient as you and me) AI with free will have a soul?
arxiv.org2. apro-software.com3. en.wikipedia.org4. neptune.ai
-
[D] The hype around Mojo lang
Other companies followed the same route to promote their paid product, e.g. plotly -> dash, Pytorch Lightning -> Lightning AI, run.ai, neptune.ai . It's actually a fair strategy, but some people may fear the conflict of interest. Especially, when the tools require some time investment, and it seems like a serious vendor lock-in. Investing some time to learn a tool is not such a big deal, but once you adapt a workflow of an entire team it can be tough to go back.
-
[P] New Open Source Framework and No-Code GUI for Fine-Tuning LLMs: H2O LLM Studio
track and compare your model performance visually. In addition, Neptune integration can be used.
What are some alternatives?
CNTK - Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit
MLflow - Open source platform for the machine learning lifecycle
Pytorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration
Serpent.AI - Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!
Caffe2
lightning-hydra-template - PyTorch Lightning + Hydra. A very user-friendly template for ML experimentation. ⚡🔥⚡