RWKV-LM
llama


RWKV-LM | llama | |
---|---|---|
85 | 187 | |
13,137 | 57,607 | |
2.2% | 1.1% | |
9.1 | 4.7 | |
12 days ago | 24 days ago | |
Python | Python | |
Apache License 2.0 | GNU General Public License v3.0 or later |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
RWKV-LM
-
Ask HN: Is anybody building an alternative transformer?
You can see all the development directly from them: https://github.com/BlinkDL/RWKV-LM
Last week version 7 was released and every time they make significant improvements.
-
Do LLMs need a context window?
https://github.com/BlinkDL/RWKV-LM#rwkv-discord-httpsdiscord... lists a number of implementations of various versions of RWKV.
https://github.com/BlinkDL/RWKV-LM#rwkv-parallelizable-rnn-w... :
> RWKV: Parallelizable RNN with Transformer-level LLM Performance (pronounced as "RwaKuv", from 4 major params: R W K V)
> RWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the "GPT" mode to quickly compute the hidden state for the "RNN" mode.
> So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding (using the final hidden state).
> "Our latest version is RWKV-6,*
- People who've used RWKV, whats your wishlist for it?
- Paving the way to efficient architectures: StripedHyena-7B
-
Understanding Deep Learning
That is not true. There are RNNs with transformer/LLM-like performance. See https://github.com/BlinkDL/RWKV-LM.
-
Q-Transformer: Scalable Reinforcement Learning via Autoregressive Q-Functions
This is what RWKV (https://github.com/BlinkDL/RWKV-LM) was made for, and what it will be good at.
Wow. Pretty darn cool! <3 :'))))
-
Personal GPT: A tiny AI Chatbot that runs fully offline on your iPhone
Thanks for the support! Two weeks ago, I'd have said longer contexts on small on-device LLMs are at least a year away, but developments from last week seem to indicate that it's well within reach. Once the low hanging product features are done, I think it's a worthy problem to spend a couple of weeks or perhaps even months on. Speaking of context lengths, recurrent models like RWKV technically have infinite context lengths, but in practice the context slowly fades away after a few thousands of tokens.
-
"If you see a startup claiming to possess top-secret results leading to human level AI, they're lying or delusional. Don't believe them!" - Yann LeCun, on the conspiracy theories of "X company has reached AGI in secret"
This is the reason there are only a few AI labs, and they show little of the theoretical and scientific understanding you believe is required. Go check their code, there's nothing there. Even the transformer with it's heads and other architectural elements turns out to not do anything and it is less efficient than RNNs. (see https://github.com/BlinkDL/RWKV-LM)
-
The Secret Sauce behind 100K context window in LLMs: all tricks in one place
I've been pondering the same thing, as simply extending the context window in a straightforward manner would lead to a significant increase in computational resources. I've had the opportunity to experiment with Anthropics' 100k model, and it's evident that they're employing some clever techniques to make it work, albeit with some imperfections. One interesting observation is that their prompt guide recommends placing instructions after the reference text when inputting lengthy text bodies. I noticed that the model often disregarded the instructions if placed beforehand. It's clear that the model doesn't allocate the same level of "attention" to all parts of the input across the entire context window.
Moreover, the inability to cache transformers makes the use of large context windows quite costly, as all previous messages must be sent with each call. In this context, the RWKV-LM project on GitHub (https://github.com/BlinkDL/RWKV-LM) might offer a solution. They claim to achieve performance comparable to transformers using an RNN, which could potentially handle a 100-page document and cache it, thereby eliminating the need to process the entire document with each subsequent query. However, I suspect RWKV might fall short in handling complex tasks that require maintaining multiple variables in memory, such as mathematical computations, but it should suffice for many scenarios.
On a related note, I believe Anthropics' Claude is somewhat underappreciated. In some instances, it outperforms GPT4, and I'd rank it somewhere between GPT4 and Bard overall.
-
Meta's plan to offer free commercial AI models puts pressure on Google, OpenAI
> The only reason open-source LLMs have a heartbeat is they’re standing on Meta’s weights.
Not necessarily.
RWKV, for example, is a different architecture that wasn't based on Facebook's weights whatsoever. I don't know where BlinkDL (the author) got the training data, but they seem to have done everything mostly independently otherwise.
https://github.com/BlinkDL/RWKV-LM
disclaimer: I've been doing a lot of work lately on an implementation of CPU inference for this model, so I'm obviously somewhat biased since this is the model I have the most experience in.
llama
-
You Wouldn't Download an AI
IANAL But, this is not true it would be a piece of the software. If there is a copyright on the app itself it would extend to the model. Even models have licenses for example LLAMA is release under this license [1]
[1] https://github.com/meta-llama/llama/blob/main/LICENSE
-
LM Studio 0.3.0
Hello Hacker News, Yagil here- founder and original creator of LM Studio (now built by a team of 6!). I had the initial idea to build LM Studio after seeing the OG LLaMa weights ‘leak’ (https://github.com/meta-llama/llama/pull/73/files) and then later trying to run some TheBloke quants during the heady early days of ggerganov/llama.cpp. In my notes LM Studio was first “Napster for LLMs” which evolved later to “GarageBand for LLMs”.
What LM Studio is today is a an IDE / explorer for local LLMs, with a focus on format universality (e.g. GGUF) and data portability (you can go to file explorer and edit everything). The main aim is to give you an accessible way to work with LLMs and make them useful for your purposes.
Folks point out that the product is not open source. However I think we facilitate distribution and usage of openly available AI and empower many people to partake in it, while protecting (in my mind) the business viability of the company. LM Studio is free for personal experimentation and we ask businesses to get in touch to buy a business license.
At the end of the day LM Studio is intended to be an easy yet powerful tool for doing things with AI without giving up personal sovereignty over your data. Our computers are super capable machines, and everything that can happen locally w/o the internet, should. The app has no telemetry whatsoever (you’re welcome to monitor network connections yourself) and it can operate offline after you download or sideload some models.
0.3.0 is a huge release for us. We added (naïve) RAG, internationalization, UI themes, and set up foundations for major releases to come.
- Open Source AI Is the Path Forward
-
Mark Zuckerberg: Llama 3, $10B Models, Caesar Augustus, Bioweapons [video]
derivative works thereof).”
https://github.com/meta-llama/llama/blob/b8348da38fde8644ef0...
Also even if you did use Llama for something, they could unilaterally pull the rug on you when you got 700 million years, AND anyone who thinks Meta broke their copyright loses their license. (Checking if you are still getting screwed is against the rules)
Therefore, Zuckerberg is accountable for explicitly anticompetitive conduct, I assumed an MMA fighter would appreciate the value of competition, go figure.
-
Hello OLMo: A Open LLM
One thing I wanted to add and call attention to is the importance of licensing in open models. This is often overlooked when we blindly accept the vague branding of models as “open”, but I am noticing that many open weight models are actually using encumbered proprietary licenses rather than standard open source licenses that are OSI approved (https://opensource.org/licenses). As an example, Databricks’s DBRX model has a proprietary license that forces adherence to their highly restrictive Acceptable Use Policy by referencing a live website hosting their AUP (https://github.com/databricks/dbrx/blob/main/LICENSE), which means as they change their AUP, you may be further restricted in the future. Meta’s Llama is similar (https://github.com/meta-llama/llama/blob/main/LICENSE ). I’m not sure who can depend on these models given this flaw.
-
Reaching LLaMA2 Performance with 0.1M Dollars
It looks like Llama 2 7B took 184,320 A100-80GB GPU-hours to train[1]. This one says it used a 96×H100 GPU cluster for 2 weeks, for 32,256 hours. That's 17.5% of the number of hours, but H100s are faster than A100s [2] and FP16/bfloat16 performance is ~3x better.
If they had tried to replicate Llama 2 identically with their hardware setup, it'd cost a little bit less than twice their MoE model.
[1] https://github.com/meta-llama/llama/blob/main/MODEL_CARD.md#...
-
DBRX: A New Open LLM
Ironically, the LLaMA license text [1] this is lifted verbatim from is itself copyrighted [2] and doesn't grant you the permission to copy it or make changes like s/meta/dbrx/g lol.
[1] https://github.com/meta-llama/llama/blob/main/LICENSE#L65
-
How Chain-of-Thought Reasoning Helps Neural Networks Compute
This is kind of an epistemological debate at this level, and I make an effort to link to some source code [1] any time it seems contentious.
LLMs (of the decoder-only, generative-pretrained family everyone means) are next token predictors in a literal implementation sense (there are some caveats around batching and what not, but none that really matter to the philosophy of the thing).
But, they have some emergent behaviors that are a trickier beast. Probably the best way to think about a typical Instruct-inspired “chat bot” session is of them sampling from a distribution with a KL-style adjacency to the training corpus (sidebar: this is why shops that do and don’t train/tune on MMLU get ranked so differently than e.g. the arena rankings) at a response granularity, the same way a diffuser/U-net/de-noising model samples at the image batch (NCHW/NHWC) level.
The corpus is stocked with everything from sci-fi novels with computers arguing their own sentience to tutorials on how to do a tricky anti-derivative step-by-step.
This mental model has adequate explanatory power for anything a public LLM has ever been shown to do, but that only heavily implies it’s what they’re doing.
There is active research into whether there is more going on that is thus far not conclusive to the satisfaction of an unbiased consensus. I personally think that research will eventually show it’s just sampling, but that’s a prediction not consensus science.
They might be doing more, there is some research that represents circumstantial evidence they are doing more.
[1] https://github.com/meta-llama/llama/blob/54c22c0d63a3f3c9e77...
- Asking Meta to stop using the term "open source" for Llama
-
Markov Chains Are the Original Language Models
Predicting subsequent text is pretty much exactly what they do. Lots of very cool engineering that’s a real feat, but at its core it’s argmax(P(token|token,corpus)):
https://github.com/facebookresearch/llama/blob/main/llama/ge...
The engineering feats are up there with anything, but it’s a next token predictor.
What are some alternatives?
flash-attention - Fast and memory-efficient exact attention
ollama - Get up and running with Llama 3.3, DeepSeek-R1, Phi-4, Gemma 2, and other large language models.
koboldcpp - Run GGUF models easily with a KoboldAI UI. One File. Zero Install.
transformers - 🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
text-generation-webui - A Gradio web UI for Large Language Models with support for multiple inference backends.
nanoGPT - The simplest, fastest repository for training/finetuning medium-sized GPTs.
KoboldAI-Client - For GGUF support, see KoboldCPP: https://github.com/LostRuins/koboldcpp
gpt4all - GPT4All: Run Local LLMs on Any Device. Open-source and available for commercial use.
DeepSpeed - DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.
alpaca-lora - Instruct-tune LLaMA on consumer hardware
llama.cpp - LLM inference in C/C++

