

-
RWKV-LM
RWKV (pronounced RwaKuv) is an RNN with great LLM performance, which can also be directly trained like a GPT transformer (parallelizable). We are at RWKV-7 "Goose". So it's combining the best of RNN and transformer - great performance, linear time, constant space (no kv-cache), fast training, infinite ctx_len, and free sentence embedding.
I've been pondering the same thing, as simply extending the context window in a straightforward manner would lead to a significant increase in computational resources. I've had the opportunity to experiment with Anthropics' 100k model, and it's evident that they're employing some clever techniques to make it work, albeit with some imperfections. One interesting observation is that their prompt guide recommends placing instructions after the reference text when inputting lengthy text bodies. I noticed that the model often disregarded the instructions if placed beforehand. It's clear that the model doesn't allocate the same level of "attention" to all parts of the input across the entire context window.
Moreover, the inability to cache transformers makes the use of large context windows quite costly, as all previous messages must be sent with each call. In this context, the RWKV-LM project on GitHub (https://github.com/BlinkDL/RWKV-LM) might offer a solution. They claim to achieve performance comparable to transformers using an RNN, which could potentially handle a 100-page document and cache it, thereby eliminating the need to process the entire document with each subsequent query. However, I suspect RWKV might fall short in handling complex tasks that require maintaining multiple variables in memory, such as mathematical computations, but it should suffice for many scenarios.
On a related note, I believe Anthropics' Claude is somewhat underappreciated. In some instances, it outperforms GPT4, and I'd rank it somewhere between GPT4 and Bard overall.
-
CodeRabbit
CodeRabbit: AI Code Reviews for Developers. Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
-
https://github.com/google-research/long-range-arena
-
DDG does have their own index, but also use Bing and many other sources. See the CEO's numerous comments to that effect: https://hn.algolia.com/?dateRange=all&page=0&prefix=false&qu..., https://hn.algolia.com/?dateRange=all&page=0&prefix=true&que...