NeuralPDE.jl VS julia

Compare NeuralPDE.jl vs julia and see what are their differences.

InfluxDB - Power Real-Time Data Analytics at Scale
Get real-time insights from all types of time series data with InfluxDB. Ingest, query, and analyze billions of data points in real-time with unbounded cardinality.
www.influxdata.com
featured
SaaSHub - Software Alternatives and Reviews
SaaSHub helps you find the best software and product alternatives
www.saashub.com
featured
NeuralPDE.jl julia
10 350
905 44,534
1.4% 0.5%
9.7 10.0
2 days ago 5 days ago
Julia Julia
GNU General Public License v3.0 or later MIT License
The number of mentions indicates the total number of mentions that we've tracked plus the number of user suggested alternatives.
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.

NeuralPDE.jl

Posts with mentions or reviews of NeuralPDE.jl. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2022-05-26.
  • Automatically install huge number of dependency?
    1 project | /r/Julia | 31 May 2023
    The documentation has a manifest associated with it: https://docs.sciml.ai/NeuralPDE/dev/#Reproducibility. Instantiating the manifest will give you all of the exact versions used for the documentation build (https://github.com/SciML/NeuralPDE.jl/blob/gh-pages/v5.7.0/assets/Manifest.toml). You just ]instantiate folder_of_manifest. Or you can use the Project.toml.
  • from Wolfram Mathematica to Julia
    2 projects | /r/Julia | 26 May 2022
    PDE solving libraries are MethodOfLines.jl and NeuralPDE.jl. NeuralPDE is very general but not very fast (it's a limitation of the method, PINNs are just slow). MethodOfLines is still somewhat under development but generates quite fast code.
  • IA et Calcul scientifique dans Kubernetes avec le langage Julia, K8sClusterManagers.jl
    11 projects | dev.to | 12 Mar 2022
    GitHub - SciML/NeuralPDE.jl: Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
  • [D] ICLR 2022 RESULTS ARE OUT
    1 project | /r/MachineLearning | 22 Jan 2022
    That doesn't mean there's no use case for PINNs, we wrote a giant review-ish kind of thing on NeuralPDE.jl to describe where PINNs might be useful. It's just... not the best for publishing. It's things like, (a) where you have not already optimized a classical method, (b) need something that's easy to generate solvers for different cases without too much worry about stability, (c) high dimensional PDEs, and (d) surrogates over parameters. (c) and (d) are the two "real" uses cases you can actually publish about, but they aren't quite good for (c) (see mesh-free methods from the old radial basis function literature in comparison) or (d) (there are much faster surrogate techniques). So we are continuing to work on them for (a) and (b) as an interesting option as part of a software suite, but that's not the kind of thing that's really publishable so I don't think we plan to ever submit that article anywhere.
  • [N] Open Colloquium by Prof. Max Welling: "Is the next deep learning disruption in the physical sciences?"
    1 project | /r/MachineLearning | 21 Oct 2021
  • [D] What are some ideas that are hyped up in machine learning research but don't actually get used in industry (and vice versa)?
    1 project | /r/MachineLearning | 16 Oct 2021
    Did this change at all with the advent of Physics Informed Neural Networks? The Julia language has some really impressive tools for that use case. https://github.com/SciML/NeuralPDE.jl
  • [Research] Input Arbitrary PDE -> Output Approximate Solution
    4 projects | /r/MachineLearning | 10 Jul 2021
    PDEs are difficult because you don't have a simple numerical definition over all PDEs because they can be defined by arbitrarily many functions. u' = Laplace u + f? Define f. u' = g(u) * Laplace u + f? Define f and g. Etc. To cover the space of PDEs you have to go symbolic at some point, and make the discretization methods dependent on the symbolic form. This is precisely what the ModelingToolkit.jl ecosystem is doing. One instantiation of a discretizer on this symbolic form is NeuralPDE.jl which takes a symbolic PDESystem and generates an OptimizationProblem for a neural network which represents the solution via a Physics-Informed Neural Network (PINN).
  • [D] Has anyone worked with Physics Informed Neural Networks (PINNs)?
    3 projects | /r/MachineLearning | 21 May 2021
    NeuralPDE.jl fully automates the approach (and extensions of it, which are required to make it solve practical problems) from symbolic descriptions of PDEs, so that might be a good starting point to both learn the practical applications and get something running in a few minutes. As part of MIT 18.337 Parallel Computing and Scientific Machine Learning I gave an early lecture on physics-informed neural networks (with a two part video) describing the approach, how it works and what its challenges are. You might find those resources enlightening.
  • Doing Symbolic Math with SymPy
    8 projects | news.ycombinator.com | 8 Jan 2021
    What is great about ModelingToolkit.jl is how its used in practical ways for other packages. E.g. NeuralPDE.jl.

    Compared to SymPy, I feel that it is less of a "how do I integrate this function" package and more about "how can I build this DSL" framework.

    https://github.com/SciML/NeuralPDE.jl

julia

Posts with mentions or reviews of julia. We have used some of these posts to build our list of alternatives and similar projects. The last one was on 2024-03-06.
  • Top Paying Programming Technologies 2024
    19 projects | dev.to | 6 Mar 2024
    34. Julia - $74,963
  • Optimize sgemm on RISC-V platform
    6 projects | news.ycombinator.com | 28 Feb 2024
    I don't believe there is any official documentation on this, but https://github.com/JuliaLang/julia/pull/49430 for example added prefetching to the marking phase of a GC which saw speedups on x86, but not on M1.
  • Dart 3.3
    2 projects | news.ycombinator.com | 15 Feb 2024
    3. dispatch on all the arguments

    the first solution is clean, but people really like dispatch.

    the second makes calling functions in the function call syntax weird, because the first argument is privileged semantically but not syntactically.

    the third makes calling functions in the method call syntax weird because the first argument is privileged syntactically but not semantically.

    the closest things to this i can think of off the top of my head in remotely popular programming languages are: nim, lisp dialects, and julia.

    nim navigates the dispatch conundrum by providing different ways to define free functions for different dispatch-ness. the tutorial gives a good overview: https://nim-lang.org/docs/tut2.html

    lisps of course lack UFCS.

    see here for a discussion on the lack of UFCS in julia: https://github.com/JuliaLang/julia/issues/31779

    so to sum up the answer to the original question: because it's only obvious how to make it nice and tidy like you're wanting if you sacrifice function dispatch, which is ubiquitous for good reason!

  • Julia 1.10 Highlights
    1 project | news.ycombinator.com | 27 Dec 2023
    https://github.com/JuliaLang/julia/blob/release-1.10/NEWS.md
  • Best Programming languages for Data Analysis📊
    4 projects | dev.to | 7 Dec 2023
    Visit official site: https://julialang.org/
  • Potential of the Julia programming language for high energy physics computing
    10 projects | news.ycombinator.com | 4 Dec 2023
    No. It runs natively on ARM.

    julia> versioninfo() Julia Version 1.9.3 Commit bed2cd540a1 (2023-08-24 14:43 UTC) Build Info: Official https://julialang.org/ release

  • Rust std:fs slower than Python
    7 projects | news.ycombinator.com | 29 Nov 2023
    https://github.com/JuliaLang/julia/issues/51086#issuecomment...

    So while this "fixes" the issue, it'll introduce a confusing time delay between you freeing the memory and you observing that in `htop`.

    But according to https://jemalloc.net/jemalloc.3.html you can set `opt.muzzy_decay_ms = 0` to remove the delay.

    Still, the musl author has some reservations against making `jemalloc` the default:

    https://www.openwall.com/lists/musl/2018/04/23/2

    > It's got serious bloat problems, problems with undermining ASLR, and is optimized pretty much only for being as fast as possible without caring how much memory you use.

    With the above-mentioned tunables, this should be mitigated to some extent, but the general "theme" (focusing on e.g. performance vs memory usage) will likely still mean "it's a tradeoff" or "it's no tradeoff, but only if you set tunables to what you need".

  • Eleven strategies for making reproducible research the norm
    1 project | news.ycombinator.com | 25 Nov 2023
    I have asked about Julia's reproducibility story on the Guix mailing list in the past, and at the time Simon Tournier didn't think it was promising. I seem to recall Julia itself didnt have a reproducible build. All I know now is that github issue is still not closed.

    https://github.com/JuliaLang/julia/issues/34753

  • Julia as a unifying end-to-end workflow language on the Frontier exascale system
    5 projects | news.ycombinator.com | 19 Nov 2023
    I don't really know what kind of rebuttal you're looking for, but I will link my HN comments from when this was first posted for some thoughts: https://news.ycombinator.com/item?id=31396861#31398796. As I said, in the linked post, I'm quite skeptical of the business of trying to assess relative buginess of programming in different systems, because that has strong dependencies on what you consider core vs packages and what exactly you're trying to do.

    However, bugs in general suck and we've been thinking a fair bit about what additional tooling the language could provide to help people avoid the classes of bugs that Yuri encountered in the post.

    The biggest class of problems in the blog post, is that it's pretty clear that `@inbounds` (and I will extend this to `@assume_effects`, even though that wasn't around when Yuri wrote his post) is problematic, because it's too hard to write. My proposal for what to do instead is at https://github.com/JuliaLang/julia/pull/50641.

    Another common theme is that while Julia is great at composition, it's not clear what's expected to work and what isn't, because the interfaces are informal and not checked. This is a hard design problem, because it's quite close to the reasons why Julia works well. My current thoughts on that are here: https://github.com/Keno/InterfaceSpecs.jl but there's other proposals also.

  • Getaddrinfo() on glibc calls getenv(), oh boy
    10 projects | news.ycombinator.com | 16 Oct 2023
    Doesn't musl have the same issue? https://github.com/JuliaLang/julia/issues/34726#issuecomment...

    I also wonder about OSX's libc. Newer versions seem to have some sort of locking https://github.com/apple-open-source-mirror/Libc/blob/master...

    but older versions (from 10.9) don't have any lockign: https://github.com/apple-oss-distributions/Libc/blob/Libc-99...

What are some alternatives?

When comparing NeuralPDE.jl and julia you can also consider the following projects:

deepxde - A library for scientific machine learning and physics-informed learning

jax - Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

SymPy - A computer algebra system written in pure Python

NetworkX - Network Analysis in Python

ModelingToolkit.jl - An acausal modeling framework for automatically parallelized scientific machine learning (SciML) in Julia. A computer algebra system for integrated symbolics for physics-informed machine learning and automated transformations of differential equations

Lua - Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural programming, object-oriented programming, functional programming, data-driven programming, and data description.

ReservoirComputing.jl - Reservoir computing utilities for scientific machine learning (SciML)

rust-numpy - PyO3-based Rust bindings of the NumPy C-API

AMDGPU.jl - AMD GPU (ROCm) programming in Julia

Numba - NumPy aware dynamic Python compiler using LLVM

18337 - 18.337 - Parallel Computing and Scientific Machine Learning

F# - Please file issues or pull requests here: https://github.com/dotnet/fsharp