DeepSpeed
server
DeepSpeed | server | |
---|---|---|
51 | 26 | |
34,711 | 8,040 | |
1.9% | 2.6% | |
9.7 | 9.4 | |
6 days ago | 1 day ago | |
Python | Python | |
Apache License 2.0 | BSD 3-clause "New" or "Revised" License |
Stars - the number of stars that a project has on GitHub. Growth - month over month growth in stars.
Activity is a relative number indicating how actively a project is being developed. Recent commits have higher weight than older ones.
For example, an activity of 9.0 indicates that a project is amongst the top 10% of the most actively developed projects that we are tracking.
DeepSpeed
-
Can we discuss MLOps, Deployment, Optimizations, and Speed?
DeepSpeed can handle parallelism concerns, and even offload data/model to RAM, or even NVMe (!?) . I'm surprised I don't see this project used more.
- [P][D] A100 is much slower than expected at low batch size for text generation
- DeepSpeed-FastGen: High-Throughput for LLMs via MII and DeepSpeed-Inference
- DeepSpeed-FastGen: High-Throughput Text Generation for LLMs
- Why async gradient update doesn't get popular in LLM community?
- DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models (r/MachineLearning)
- [P] DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models
-
A comprehensive guide to running Llama 2 locally
While on the surface, a 192GB Mac Studio seems like a great deal (it's not much more than a 48GB A6000!), there are several reasons why this might not be a good idea:
* I assume most people have never used llama.cpp Metal w/ large models. It will drop to CPU speeds whenever the context window is full: https://github.com/ggerganov/llama.cpp/issues/1730#issuecomm... - while sure this might be fixed in the future, it's been an issue since Metal support was added, and is a significant problem if you are actually trying to actually use it for inferencing. With 192GB of memory, you could probably run larger models w/o quantization, but I've never seen anyone post benchmarks of their experiences. Note that at that point, the limited memory bandwidth will be a big factor.
* If you are planning on using Apple Silicon for ML/training, I'd also be wary. There are multi-year long open bugs in PyTorch[1], and most major LLM libs like deepspeed, bitsandbytes, etc don't have Apple Silicon support[2][3].
You can see similar patterns w/ Stable Diffusion support [4][5] - support lagging by months, lots of problems and poor performance with inference, much less fine tuning. You can apply this to basically any ML application you want (srt, tts, video, etc)
Macs are fine to poke around with, but if you actually plan to do more than run a small LLM and say "neat", especially for a business, recommending a Mac for anyone getting started w/ ML workloads is a bad take. (In general, for anyone getting started, unless you're just burning budget, renting cloud GPU is going to be the best cost/perf, although on-prem/local obviously has other advantages.)
[1] https://github.com/pytorch/pytorch/issues?q=is%3Aissue+is%3A...
[2] https://github.com/microsoft/DeepSpeed/issues/1580
[3] https://github.com/TimDettmers/bitsandbytes/issues/485
[4] https://github.com/AUTOMATIC1111/stable-diffusion-webui/disc...
[5] https://forums.macrumors.com/threads/ai-generated-art-stable...
-
Microsoft Research proposes new framework, LongMem, allowing for unlimited context length along with reduced GPU memory usage and faster inference speed. Code will be open-sourced
And https://github.com/microsoft/deepspeed
-
April 2023
DeepSpeed Chat: Easy, Fast and Affordable RLHF Training of ChatGPT-like Models at All Scales (https://github.com/microsoft/DeepSpeed/tree/master/blogs/deepspeed-chat)
server
- Best LLM Inference Engines and Servers to Deploy LLMs in Production
- FLaNK Weekly 08 Jan 2024
- Is there any open source app to load a model and expose API like OpenAI?
- "A matching Triton is not available"
-
best way to serve llama V2 (llama.cpp VS triton VS HF text generation inference)
I am wondering what is the best / most cost-efficient way to serve llama V2. - llama.cpp (is it production ready or just for playing around?) ? - Triton inference server ? - HF text generation inference ?
- Triton Inference Server - Backend
-
Single RTX 3080 or two RTX 3060s for deep learning inference?
For inference of CNNs, memory should really not be an issue. If it is a software engineering problem, not a hardware issue. FP16 or Int8 for weights is fine and weight size won’t increase due to the high resolution. And during inference memory used for hidden layer tensors can be reused as soon as the last consumer layer has been processed. You likely using something that is designed for training for inference and that blows up the memory requirement, or if you are using TensorRT or something like that, you need to be careful to avoid that every tasks loads their own copy of the library code into the GPU. Maybe look at https://github.com/triton-inference-server/server
-
Machine Learning Inference Server in Rust?
I am looking for something like [Triton Inference Server](https://github.com/triton-inference-server/server) or [TFX Serving](https://www.tensorflow.org/tfx/guide/serving), but in Rust. I came across [Orkon](https://github.com/vertexclique/orkhon) which seems to be dormant and a bunch of examples off of the [Awesome-Rust-MachineLearning](https://github.com/vaaaaanquish/Awesome-Rust-MachineLearning)
-
Multi-model serving options
You've already mentioned Seldon Core which is well worth looking at but if you're just after the raw multi-model serving aspect rather than a fully-fledged deployment framework you should maybe take a look at the individual inference servers: Triton Inference Server and MLServer both support multi-model serving for a wide variety of frameworks (and custom python models). MLServer might be a better option as it has an MLFlow runtime but only you will be able to decide that. There also might be other inference servers that do MMS that I'm not aware of.
-
I mean,.. we COULD just make our own lol
[1] https://docs.nvidia.com/launchpad/ai/chatbot/latest/chatbot-triton-overview.html[2] https://github.com/triton-inference-server/server[3] https://neptune.ai/blog/deploying-ml-models-on-gpu-with-kyle-morris[4] https://thechief.io/c/editorial/comparison-cloud-gpu-providers/[5] https://geekflare.com/best-cloud-gpu-platforms/
What are some alternatives?
ColossalAI - Making large AI models cheaper, faster and more accessible
onnx-tensorrt - ONNX-TensorRT: TensorRT backend for ONNX
Megatron-LM - Ongoing research training transformer models at scale
ROCm - AMD ROCm™ Software - GitHub Home [Moved to: https://github.com/ROCm/ROCm]
fairscale - PyTorch extensions for high performance and large scale training.
pinferencia - Python + Inference - Model Deployment library in Python. Simplest model inference server ever.
TensorRT - NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.
Triton - Triton is a dynamic binary analysis library. Build your own program analysis tools, automate your reverse engineering, perform software verification or just emulate code.
accelerate - 🚀 A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support
fairseq - Facebook AI Research Sequence-to-Sequence Toolkit written in Python.
serve - Serve, optimize and scale PyTorch models in production