Ingest, store, & analyze all types of time series data in a fully-managed, purpose-built database. Keep data forever with low-cost storage and superior data compression. Learn more →
Server Alternatives
Similar projects and alternatives to server
-
DeepSpeed
DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.
-
-
ONLYOFFICE
ONLYOFFICE Docs — document collaboration in your environment. Powerful document editing and collaboration in your app or environment. Ultimate security, API and 30+ ready connectors, SaaS or on-premises
-
-
TensorRT
NVIDIA® TensorRT™, an SDK for high-performance deep learning inference, includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for inference applications.
-
pinferencia
Python + Inference - Model Deployment library in Python. Simplest model inference server ever.
-
-
-
Sonar
Write Clean Python Code. Always.. Sonar helps you commit clean code every time. With over 225 unique rules to find Python bugs, code smells & vulnerabilities, Sonar finds the issues while you focus on the work.
-
Triton
Triton is a dynamic binary analysis library. Build your own program analysis tools, automate your reverse engineering, perform software verification or just emulate code. (by JonathanSalwan)
-
jax
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
-
-
-
-
-
-
-
-
-
Awesome-Rust-MachineLearning
This repository is a list of machine learning libraries written in Rust. It's a compilation of GitHub repositories, blogs, books, movies, discussions, papers, etc. 🦀
-
-
-
InfluxDB
Access the most powerful time series database as a service. Ingest, store, & analyze all types of time series data in a fully-managed, purpose-built database. Keep data forever with low-cost storage and superior data compression.
server reviews and mentions
-
Machine Learning Inference Server in Rust?
I am looking for something like [Triton Inference Server](https://github.com/triton-inference-server/server) or [TFX Serving](https://www.tensorflow.org/tfx/guide/serving), but in Rust. I came across [Orkon](https://github.com/vertexclique/orkhon) which seems to be dormant and a bunch of examples off of the [Awesome-Rust-MachineLearning](https://github.com/vaaaaanquish/Awesome-Rust-MachineLearning)
-
Multi-model serving options
You've already mentioned Seldon Core which is well worth looking at but if you're just after the raw multi-model serving aspect rather than a fully-fledged deployment framework you should maybe take a look at the individual inference servers: Triton Inference Server and MLServer both support multi-model serving for a wide variety of frameworks (and custom python models). MLServer might be a better option as it has an MLFlow runtime but only you will be able to decide that. There also might be other inference servers that do MMS that I'm not aware of.
-
I mean,.. we COULD just make our own lol
[1] https://docs.nvidia.com/launchpad/ai/chatbot/latest/chatbot-triton-overview.html[2] https://github.com/triton-inference-server/server[3] https://neptune.ai/blog/deploying-ml-models-on-gpu-with-kyle-morris[4] https://thechief.io/c/editorial/comparison-cloud-gpu-providers/[5] https://geekflare.com/best-cloud-gpu-platforms/
-
Why TensorFlow for Python is dying a slow death
"TensorFlow has the better deployment infrastructure"
Tensorflow Serving is nice in that it's so tightly integrated with Tensorflow. As usual that goes both ways. It's so tightly coupled to Tensorflow if the mlops side of the solution is using Tensorflow Serving you're going to get "trapped" in the Tensorflow ecosystem (essentially).
For pytorch models (and just about anything else) I've been really enjoying Nvidia Triton Server[0]. Of course it further entrenches Nvidia and CUDA in the space (although you can execute models CPU only) but for a deployment today and the foreseeable future you're almost certainly going to be using a CUDA stack anyway.
Triton Server is very impressive and I'm always surprised to see how relatively niche it is.
-
Show HN: Software for Remote GPU-over-IP
Inference servers essentially turn a model running on CPU and/or GPU hardware into a microservice.
Many of them support the kserve API standard[0] that supports everything from model loading/unloading to (of course) inference requests across models, versions, frameworks, etc.
So in the case of Triton[1] you can have any number of different TensorFlow/torch/tensorrt/onnx/etc models, versions, and variants. You can have one or more Triton instances running on hardware with access to local GPUs (for this example). Then you can put standard REST and or grpc load balancers (or whatever you want) in front of them, hit them via another API, whatever.
Now all your applications need to do to perform inference is do an HTTP POST (or use a client[2]) for model input, Triton runs it on a GPU (or CPU if you want), and you get back whatever the model output is.
Not a sales pitch for Triton but it (like some others) can also do things like dynamic batching with QoS parameters, automated model profiling and performance optimization[3], really granular control over resources, response caching, python middleware for application/biz logic, accelerated media processing with Nvidia DALI, all kinds of stuff.
[0] - https://github.com/kserve/kserve
[1] - https://github.com/triton-inference-server/server
[2] - https://github.com/triton-inference-server/client
[3] - https://github.com/triton-inference-server/model_analyzer
-
Exploring Ghostwriter, a GitHub Copilot alternative
Replit built Ghostwriter on the open source scene based on Salesforce’s Codegen, using Nvidia’s FasterTransformer and Triton server for highly optimized decoders, and the knowledge distillation process of the CodeGen model from two billion parameters to a faster model of one billion parameters.
-
[D] How to get the fastest PyTorch inference and what is the "best" model serving framework?
For 2), I am aware of a few options. Triton inference server is an obvious one as is the ‘transformer-deploy’ version from LDS. My only reservation here is that they require the model compilation or are architecture specific. I am aware of others like Bento, Ray serving and TorchServe. Ideally I would have something that allows any (PyTorch model) to be used without the extra compilation effort (or at least optionally) and has some convenience things like ease of use, easy to deploy, easy to host multiple models and can perform some dynamic batching. Anyway, I am really interested to hear people's experience here as I know there are now quite a few options! Any help is appreciated! Disclaimer - I have no affiliation or are connected in any way with the libraries or companies listed here. These are just the ones I know of. Thanks in advance.
-
Popular Machine Learning Deployment Tools
GitHub
-
Nvidia Fiscal Q3 2022 Financial Result
Tools for developing and deploying large language models: NVIDIA NeMo Megatron, for training models with trillions of parameters; the Megatron 530B customizable LLM that can be trained for new domains and languages; and NVIDIA Triton Inference Server™ with multi-GPU, multinode distributed inference functionality.
-
Triton: Open-Source GPU Programming for Neural Networks
Unfortunate name clash with NVIDIAs Triton Inference Server: https://developer.nvidia.com/nvidia-triton-inference-server
-
A note from our sponsor - InfluxDB
www.influxdata.com | 1 Jun 2023
Stats
triton-inference-server/server is an open source project licensed under BSD 3-clause "New" or "Revised" License which is an OSI approved license.
The primary programming language of server is Python.