SaaSHub helps you find the best software and product alternatives Learn more →
Lambdaprompt Alternatives
Similar projects and alternatives to lambdaprompt
-
datasloth
Natural language Pandas queries and data generation powered by GPT-3
-
-
InfluxDB
Collect and Analyze Billions of Data Points in Real Time. Manage all types of time series data in a single, purpose-built database. Run at any scale in any environment in the cloud, on-premises, or at the edge.
-
-
LiteratureReviewBot
Experiment to use GPT-3 to help write grant proposals.
-
-
-
-
Onboard AI
Learn any GitHub repo in 59 seconds. Onboard AI learns any GitHub repo in minutes and lets you chat with it to locate functionality, understand different parts, and generate new code. Use it for free at www.getonboard.dev.
-
-
-
rasa
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants
-
-
text-generation-webui
A Gradio web UI for Large Language Models. Supports transformers, GPTQ, AWQ, EXL2, llama.cpp (GGUF), Llama models.
-
langchain
⚡ Building applications with LLMs through composability ⚡ [Moved to: https://github.com/langchain-ai/langchain] (by hwchase17)
-
gpt_index
LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data. [Moved to: https://github.com/jerryjliu/llama_index]
-
NeMo-Guardrails
NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.
-
RasaGPT
💬 RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain. Built w/ Rasa, FastAPI, Langchain, LlamaIndex, SQLModel, pgvector, ngrok, telegram
-
motorhead
🧠 Motorhead is a memory and information retrieval server for LLMs.
-
zillion
Make sense of it all. Semantic data modeling and analytics with a sprinkle of AI. https://totalhack.github.io/zillion/
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
lambdaprompt reviews and mentions
-
RasaGPT: First headless LLM chatbot built on top of Rasa, Langchain and FastAPI
https://github.com/approximatelabs/lambdaprompt It has served all of my personal use-cases since making it, including powering `sketch` (copilot for pandas) https://github.com/approximatelabs/sketch
Core things it does: Uses jinja templates, does sync and async, and most importantly treats LLM completion endpoints as "function calls", which you can compose and build structures around just with simple python. I also combined it with fastapi so you can just serve up any templates you want directly as rest endpoints. It also offers callback hooks so you can log & trace execution graphs.
All together its only ~600 lines of python.
I haven't had a chance to really push all the different examples out there, but most "complex behaviors", so there aren't many patterns to copy. But if you're comfortable in python, then I think it offers a pretty good interface.
I hope to get back to it sometime in the next week to introduce local-mode (eg. all the open source smaller models are now available, I want to make those first-class)
-
Replacing a SQL analyst with 26 recursive GPT prompts
This is great~ There's been some really rapid progress on Text2SQL in the last 6 months, and I really thinking this will have a real impact on the modern data stack ecosystem!
I had similar success with lambdaprompt for solving Text2SQL (https://github.com/approximatelabs/lambdaprompt/)
-
LangChain: Build AI apps with LLMs through composability
This is great! I love seeing how rapidly in the past 6 months these ideas are evolving. I've been internally calling these systems "prompt machines". I'm a strong believer that chaining together language model prompts is core to extracting real, and reproducible value from language models. I sometimes even wonder if systems like this are the path to AGI as well, and spent a full month 'stuck' on that hypothesis in October.
Specific to prompt-chaining: I've spent a lot of time ideating about where "prompts live" (are they best as API endpoint, as cli programs, as machines with internal state, treated as a single 'assembly instruction' -- where do "prompts" live naturally) and eventually decided on them being the most synonymous with functions (and api endpoints via the RPC concept)
mental model I've developed (sharing in case it resonates with anyone else)
a "chain" is `a = 'text'; b = p1(a); c = p2(b)` where p1 and p2 are LLM prompts.
What comes next (in my opinion) is other programming constructs: loops, conditionals, variables (memory), etc. (I think LangChain represents some of these concepts as their "areas" -> chain (function chaining), agents (loops), memory (variables))
To offer this code-style interface on top of LLMs, I made something similar to LangChain, but scoped what i made to only focus on the bare functional interface and the concept of a "prompt function", and leave the power of the "execution flow" up to the language interpreter itself (in this case python) so the user can make anything with it.
https://github.com/approximatelabs/lambdaprompt
I've had so much fun recently just playing with prompt chaining in general, it feels like the "new toy" in the AI space (orders of magnitude more fun than dall-e or chat-gpt for me). (I built sketch (posted the other day on HN) based on lambdaprompt)
My favorites have been things to test the inherent behaviors of language models using iterated prompts. I spent some time looking for "fractal" like behavior inside the functions, hoping that if I got the right starting point, an iterated function would avoid fixed points --> this has eluded me so far, so if anyone finds non-fixed points in LLMs, please let me know!
I'm a believer that the "next revolution" in machine-written code and behavior from LLMs will come when someone can tame LLM prompting to self-write prompt chains themselves (whether that is on lambdaprompt, langchain, or something else!)
All in all, I'm super hyped about LangChain, love the space they are in and the rapid attention they are getting~
-
Show HN: Sketch – AI code-writing assistant that understands data content
digging thru the code https://github.com/approximatelabs/sketch/blob/9d567ec161015...
this seems to be using their gpt3 frameowrk: https://github.com/approximatelabs/lambdaprompt
which uses text-davinci-003 by default https://github.com/approximatelabs/lambdaprompt/blob/main/la...
From https://github.com/approximatelabs/sketch/blob/main/sketch/p... it appears that this library is calling a remote API, which obviates the utility of the demonstrated use case.
Upon closer inspection, it looks like https://github.com/approximatelabs/sketch interfaces with the model via https://github.com/approximatelabs/lambdaprompt, which is made by the same organization. This suggests to me that the former may be a toy demonstration of the latter.
- Show HN: Prompt – Build, compose and call templated LLM prompts
-
A note from our sponsor - #<SponsorshipServiceOld:0x00007f0f9afc7eb0>
www.saashub.com | 7 Dec 2023
Stats
approximatelabs/lambdaprompt is an open source project licensed under MIT License which is an OSI approved license.
The primary programming language of lambdaprompt is Python.