Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR. Learn more →
RCall.jl Alternatives
Similar projects and alternatives to RCall.jl
-
-
CodeRabbit
CodeRabbit: AI Code Reviews for Developers. Revolutionize your code reviews with AI. CodeRabbit offers PR summaries, code walkthroughs, 1-click suggestions, and AST-based analysis. Boost productivity and code quality across all major languages with each PR.
-
-
-
-
-
-
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
-
ModelingToolkit.jl
An acausal modeling framework for automatically parallelized scientific machine learning (SciML) in Julia. A computer algebra system for integrated symbolics for physics-informed machine learning and automated transformations of differential equations
-
-
-
Chain.jl
A Julia package for piping a value through a series of transformation expressions using a more convenient syntax than Julia's native piping functionality.
-
-
-
-
-
-
-
Dash.jl
Dash for Julia - A Julia interface to the Dash ecosystem for creating analytic web applications in Julia. No JavaScript required.
-
AlgebraOfGraphics.jl
An algebraic spin on grammar-of-graphics data visualization in Julia. Powered by the Makie.jl plotting ecosystem.
-
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
RCall.jl discussion
RCall.jl reviews and mentions
-
Makie, a modern and fast plotting library for Julia
I don't use it personally, but RCall.jl[1] is the main R interop package in Julia. You could call libraries that have no equivalent in Julia using that and write your own analyses in Julia instead.
[1] https://github.com/JuliaInterop/RCall.jl
-
Making Python 100x faster with less than 100 lines of Rust
You can have your cake and eat it with the likes of
* PythonCall.jl - https://github.com/cjdoris/PythonCall.jl
* NodeCall.jl - https://github.com/sunoru/NodeCall.j
* RCall.jl - https://github.com/JuliaInterop/RCall.jl
I tend to use Julia for most things and then just dip into another language’s ecosystem if I can’t find something to do the job and it’s too complex to build myself
-
Interoperability in Julia
To inter-operate Julia with the R language, the RCall package is used. Run the following commands on the Julia REPL
-
Convert Random Forest from Julia to R
https://github.com/JuliaInterop/RCall.jl may help
-
I'm considering Rust, Go, or Julia for my next language and I'd like to hear your thoughts on these
If you need to bindings to your existing R packages then Julia is the way. Check out RCall.jl
-
translate R code to Julia code
I have no experience with R, but maybe this will be of use: https://github.com/JuliaInterop/RCall.jl
-
Julia 1.6: what has changed since Julia 1.0?
You can use RCall to use R from Julia: https://github.com/JuliaInterop/RCall.jl
-
Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?
I worked with R and Python during the last 3 years but learning and dabbling with Julia since 0.6. Since the availability of [PyCall.jl] and [RCall.jl], the transition to Julia can already be easier for Python/R users.
I agree that most of the time data wrangling is super confortable in R due to the syntax flexibility exploited by the big packages (tidyverse/data.table/etc). At the same time, Julia and R share a bigger heritage from Lisp influence that with Python, because R is also a Lisp-ish language (see [Advanced R, Metaprogramming]). My main grip from the R ecosystem is not that most of the perfomance sensitive packages are written in C/C++/Fortran but are written so deeply interconnect with the R environment that porting them to Julia that provide also an easy and good interface to C/C++/Fortran (and more see [Julia Interop] repo) seems impossible for some of them.
I also think that Julia reach to broader scientific programming public than R, where it overlaps with Python sometimes but provides the Matlab/Octave public with an better alternative. I don't expected to see all the habits from those communities merge into Julia ecosystem. On the other side, I think that Julia bigger reach will avoid to fall into the "base" vs "tidyverse" vs "something else in-between" that R is now.
[PyCall.jl]: https://github.com/JuliaPy/PyCall.jl
[RCall.jl]: https://github.com/JuliaInterop/RCall.jl
[Julia Interop]: https://github.com/JuliaInterop
[Advanced R, Metaprogramming] by Hadley Wickham: https://adv-r.hadley.nz/metaprogramming.html
-
A note from our sponsor - CodeRabbit
coderabbit.ai | 9 Feb 2025
Stats
JuliaInterop/RCall.jl is an open source project licensed under GNU General Public License v3.0 or later which is an OSI approved license.
The primary programming language of RCall.jl is Julia.