Onboard AI learns any GitHub repo in minutes and lets you chat with it to locate functionality, understand different parts, and generate new code. Use it for free at www.getonboard.dev. Learn more →
RCall.jl Alternatives
Similar projects and alternatives to RCall.jl
-
-
Chain.jl
A Julia package for piping a value through a series of transformation expressions using a more convenient syntax than Julia's native piping functionality.
-
InfluxDB
Collect and Analyze Billions of Data Points in Real Time. Manage all types of time series data in a single, purpose-built database. Run at any scale in any environment in the cloud, on-premises, or at the edge.
-
-
-
-
-
-
Onboard AI
Learn any GitHub repo in 59 seconds. Onboard AI learns any GitHub repo in minutes and lets you chat with it to locate functionality, understand different parts, and generate new code. Use it for free at www.getonboard.dev.
-
Revise.jl
Automatically update function definitions in a running Julia session
-
-
-
-
-
poly-match
Source for the "Making Python 100x faster with less than 100 lines of Rust" blog post
-
-
-
-
-
-
ModelingToolkit.jl
An acausal modeling framework for automatically parallelized scientific machine learning (SciML) in Julia. A computer algebra system for integrated symbolics for physics-informed machine learning and automated transformations of differential equations
-
TidyverseSkeptic
An opinionated view of the Tidyverse "dialect" of the R language.
-
SaaSHub
SaaSHub - Software Alternatives and Reviews. SaaSHub helps you find the best software and product alternatives
RCall.jl reviews and mentions
-
Makie, a modern and fast plotting library for Julia
I don't use it personally, but RCall.jl[1] is the main R interop package in Julia. You could call libraries that have no equivalent in Julia using that and write your own analyses in Julia instead.
-
Making Python 100x faster with less than 100 lines of Rust
You can have your cake and eat it with the likes of
* PythonCall.jl - https://github.com/cjdoris/PythonCall.jl
* NodeCall.jl - https://github.com/sunoru/NodeCall.j
* RCall.jl - https://github.com/JuliaInterop/RCall.jl
I tend to use Julia for most things and then just dip into another language’s ecosystem if I can’t find something to do the job and it’s too complex to build myself
-
Interoperability in Julia
To inter-operate Julia with the R language, the RCall package is used. Run the following commands on the Julia REPL
-
Convert Random Forest from Julia to R
https://github.com/JuliaInterop/RCall.jl may help
-
I'm considering Rust, Go, or Julia for my next language and I'd like to hear your thoughts on these
If you need to bindings to your existing R packages then Julia is the way. Check out RCall.jl
-
Julia 1.6: what has changed since Julia 1.0?
You can use RCall to use R from Julia: https://github.com/JuliaInterop/RCall.jl
-
Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?
I worked with R and Python during the last 3 years but learning and dabbling with Julia since 0.6. Since the availability of [PyCall.jl] and [RCall.jl], the transition to Julia can already be easier for Python/R users.
I agree that most of the time data wrangling is super confortable in R due to the syntax flexibility exploited by the big packages (tidyverse/data.table/etc). At the same time, Julia and R share a bigger heritage from Lisp influence that with Python, because R is also a Lisp-ish language (see [Advanced R, Metaprogramming]). My main grip from the R ecosystem is not that most of the perfomance sensitive packages are written in C/C++/Fortran but are written so deeply interconnect with the R environment that porting them to Julia that provide also an easy and good interface to C/C++/Fortran (and more see [Julia Interop] repo) seems impossible for some of them.
I also think that Julia reach to broader scientific programming public than R, where it overlaps with Python sometimes but provides the Matlab/Octave public with an better alternative. I don't expected to see all the habits from those communities merge into Julia ecosystem. On the other side, I think that Julia bigger reach will avoid to fall into the "base" vs "tidyverse" vs "something else in-between" that R is now.
[PyCall.jl]: https://github.com/JuliaPy/PyCall.jl
[RCall.jl]: https://github.com/JuliaInterop/RCall.jl
[Julia Interop]: https://github.com/JuliaInterop
[Advanced R, Metaprogramming] by Hadley Wickham: https://adv-r.hadley.nz/metaprogramming.html
-
A note from our sponsor - Onboard AI
getonboard.dev | 10 Dec 2023
Stats
JuliaInterop/RCall.jl is an open source project licensed under GNU General Public License v3.0 or later which is an OSI approved license.
The primary programming language of RCall.jl is Julia.