Our great sponsors
-
Otherwise, though, Rust is an excellent choice. The many advantages of Rust (great package manager, memory safety, modern language features, ...) are already well documented so I won't repeat them here. Specifically for writing Python libraries, check out PyO3, maturin, and rust-numpy, which allow for seamless integration with the Python scientific computing ecosystem. Dockerizing/packaging is a non-issue, with the aforementioned libraries you can easily publish Rust libraries as pip packages or compile them from source as part of your docker build. We have several successful production deployments of Rust code at OpenAI, and I have personally found it to be a joy to work with.
-
Why not do it all in C++? Dlib has good support for ML. For instance, this is how one would do a simple MNIST example:
-
SonarLint
Deliver Cleaner and Safer Code - Right in Your IDE of Choice!. SonarLint is a free and open source IDE extension that identifies and catches bugs and vulnerabilities as you code, directly in the IDE. Install from your favorite IDE marketplace today.
-
Hey OP, you might want to check this site out: http://arewelearningyet.com
-
rust-bert
Rust native ready-to-use NLP pipelines and transformer-based models (BERT, DistilBERT, GPT2,...)
If you are using BERT models and some miscellaneous other related stuff then you should check out the rust-bert and Bert Sentence repos https://github.com/guillaume-be/rust-bert
-
Perhaps something like https://github.com/RustPython/RustPython might be an option at some point.
-
maturin
Build and publish crates with pyo3, rust-cpython and cffi bindings as well as rust binaries as python packages
Otherwise, though, Rust is an excellent choice. The many advantages of Rust (great package manager, memory safety, modern language features, ...) are already well documented so I won't repeat them here. Specifically for writing Python libraries, check out PyO3, maturin, and rust-numpy, which allow for seamless integration with the Python scientific computing ecosystem. Dockerizing/packaging is a non-issue, with the aforementioned libraries you can easily publish Rust libraries as pip packages or compile them from source as part of your docker build. We have several successful production deployments of Rust code at OpenAI, and I have personally found it to be a joy to work with.
-
Otherwise, though, Rust is an excellent choice. The many advantages of Rust (great package manager, memory safety, modern language features, ...) are already well documented so I won't repeat them here. Specifically for writing Python libraries, check out PyO3, maturin, and rust-numpy, which allow for seamless integration with the Python scientific computing ecosystem. Dockerizing/packaging is a non-issue, with the aforementioned libraries you can easily publish Rust libraries as pip packages or compile them from source as part of your docker build. We have several successful production deployments of Rust code at OpenAI, and I have personally found it to be a joy to work with.
-
Scout APM
Less time debugging, more time building. Scout APM allows you to find and fix performance issues with no hassle. Now with error monitoring and external services monitoring, Scout is a developer's best friend when it comes to application development.