Our great sponsors
- InfluxDB - Collect and Analyze Billions of Data Points in Real Time
- Onboard AI - Learn any GitHub repo in 59 seconds
- SaaSHub - Software Alternatives and Reviews
-
EconML
ALICE (Automated Learning and Intelligence for Causation and Economics) is a Microsoft Research project aimed at applying Artificial Intelligence concepts to economic decision making. One of its goals is to build a toolkit that combines state-of-the-art machine learning techniques with econometrics in order to bring automation to complex causal inference problems. To date, the ALICE Python SDK (econml) implements orthogonal machine learning algorithms such as the double machine learning work of
EconML and CausalLift are pretty good python packages that help you build uplift models. scikit-uplift is a decent sklearn style wrapper package that can be helpful as well. One of the drawbacks of these packages is they only allow for the modeling of a single treatment. mr-uplift is a newer package that allows you to model the multiple treatment effects simultaneously. I haven't used it personally, but it does look fairly interesting.
-
EconML and CausalLift are pretty good python packages that help you build uplift models. scikit-uplift is a decent sklearn style wrapper package that can be helpful as well. One of the drawbacks of these packages is they only allow for the modeling of a single treatment. mr-uplift is a newer package that allows you to model the multiple treatment effects simultaneously. I haven't used it personally, but it does look fairly interesting.
-
InfluxDB
Collect and Analyze Billions of Data Points in Real Time. Manage all types of time series data in a single, purpose-built database. Run at any scale in any environment in the cloud, on-premises, or at the edge.
Related posts
- [D] What approach to decide which class is most optimal for recovery?
- Getting treatment effects from a random forest
- EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation
- [N] Spotify Confidence - open source for analyzing a/b test data
- uber/causalml: Uplift modeling and causal inference with machine learning algorithms