-
-
Judoscale
Save 47% on cloud hosting with autoscaling that just works. Judoscale integrates with Django, FastAPI, Celery, and RQ to make autoscaling easy and reliable. Save big, and say goodbye to request timeouts and backed-up task queues.
-
Don't use an LSTM. Get up to date with SoTA methods and read the papers in the field. LSTMs are not the way forward. Read the papers I suggested. It would be very useful to come to grips with both the Time Series Repository (https://github.com/thuml/Time-Series-Library) and Darts (https://github.com/unit8co/darts) as these are widely used for research and in industry.
-
Don't use an LSTM. Get up to date with SoTA methods and read the papers in the field. LSTMs are not the way forward. Read the papers I suggested. It would be very useful to come to grips with both the Time Series Repository (https://github.com/thuml/Time-Series-Library) and Darts (https://github.com/unit8co/darts) as these are widely used for research and in industry.
Related posts
-
Darts: Python lib for forecasting and anomaly detection on time series
-
[D] Hybrid forecasting framework ARIMA-LSTM
-
[D] Do any of you have experience using Darts for forecasting?
-
gluonts VS darts - a user suggested alternative
2 projects | 13 Apr 2023 -
A Simple Guide to Feature Engineering in the Forecast Menu