-
automl-app
AutoML Web App - build Machine Learning pipeline in automatic way with Graphical User Interface (GUI). You can run app locally!
-
Scout Monitoring
Free Django app performance insights with Scout Monitoring. Get Scout setup in minutes, and let us sweat the small stuff. A couple lines in settings.py is all you need to start monitoring your apps. Sign up for our free tier today.
-
mljar-supervised
Python package for AutoML on Tabular Data with Feature Engineering, Hyper-Parameters Tuning, Explanations and Automatic Documentation
Web App is using two open-source packages that I've created:
- MLJAR AutoML - Python package for AutoML on tabular data https://github.com/mljar/mljar-supervised
- Mercury - framework for converting Jupyter Notebooks into Web App https://github.com/mljar/mercury
You can run Web App locally. What is more, you can adjust notebook's code for your needs. For example, you can set different validation strategies or evalutaion metrics or longer training times. The notebooks in the repo are good starting point for you to develop more advanced apps.
-
Web App is using two open-source packages that I've created:
- MLJAR AutoML - Python package for AutoML on tabular data https://github.com/mljar/mljar-supervised
- Mercury - framework for converting Jupyter Notebooks into Web App https://github.com/mljar/mercury
You can run Web App locally. What is more, you can adjust notebook's code for your needs. For example, you can set different validation strategies or evalutaion metrics or longer training times. The notebooks in the repo are good starting point for you to develop more advanced apps.
-
Here is benchmark done by independent team of researchers https://openml.github.io/automlbenchmark/
I think most of overfitting is avoided with early stoppoing technique.
The underfitting can be avoidwd with using large training time.